Spitzer infrared observations and independent validation of the transiting super-earth CoRoT-7b
Astrophysical Journal 745:1 (2012)
Abstract:
The detection and characterization of the first transiting super-Earth, CoRoT-7b, has required an unprecedented effort in terms of telescope time and analysis. Although the star does display a radial-velocity signal at the period of the planet, this has been difficult to disentangle from the intrinsic stellar variability and pinning down the velocity amplitude has been very challenging. As a result, the precise value of the mass of the planet - and even the extent to which it can be considered to be confirmed - has been debated in the recent literature, with six mass measurements published so far based on the same spectroscopic observations, ranging from about 2 to 8 Earth masses. Here we report on an independent validation of the planet discovery using one of the fundamental properties of a transit signal: its achromaticity. We observed four transits of CoRoT-7b at 4.5μm and 8.0μm with the Infrared Array Camera (IRAC) on board the Spitzer Space Telescope in order to determine whether the depth of the transit signal in the near-infrared is consistent with that observed in the CoRoT bandpass, as expected for a planet. We detected the transit and found an average depth of 0.426± 0.115mmag at 4.5μm, which is in good agreement with the depth of 0.350 ± 0.011mmag (ignoring limb darkening) found by CoRoT. The observations at 8.0μm did not yield a significant detection. The 4.5μm observations place important constraints on the kinds of astrophysical false positives that could mimic the signal. Combining this with additional constraints reported earlier, we performed an exhaustive exploration of possible blend scenarios for CoRoT-7b using the BLENDER technique. We are able to rule out the vast majority of false positives, and the remaining ones are found to be much less likely than a true transiting planet. We thus validate CoRoT-7b as a bona fide planet with a very high degree of confidence, independently of any radial-velocity information. Our Spitzer observations have additionally allowed us to significantly improve the ephemeris of the planet, so that future transits should be recoverable well into the next decade. In its warm phase Spitzer is expected to be an essential tool for the validation, along the lines of the present analysis, of transiting planet candidates with shallow signals from CoRoT as well as from the Kepler mission, including potentially rocky planets in the habitable zones of their parent stars. © 2012. The American Astronomical Society. All rights reserved.Transiting exoplanets from the CoRoT space mission XIX. CoRoT-23b: A dense hot Jupiter on an eccentric orbit
Astronomy and Astrophysics 537 (2012)
Abstract:
We report the detection of CoRoT-23b, a hot Jupiter transiting in front of its host star with a period of 3.6314 ± 0.0001 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite, combined with spectroscopic radial velocity (RV) measurements. A photometric search for possible background eclipsing binaries conducted at CFHT and OGS concluded with a very low risk of false positives. The usual techniques of combining RV and transit data simultaneously were used to derive stellar and planetary parameters. The planet has a mass of Mp = 2.8 ± 0.3 M Jup, a radius of Rpl= 1.05 ± 0.13RJup, a density of ≈ 3 g cm-3. RV data also clearly reveal a nonzero eccentricity of e = 0.16 ± 0.02. The planet orbits a mature G0 main sequence star of V = 15.5 mag, with a mass M* = 1.14 ± 0.08 M⊙, a radius R*= 1. 61 ± 0.18 R⊙ and quasi-solarabundances. The age of the system is evaluated to be 7 Gyr, not far from the transition to subgiant, in agreement with the rather large stellar radius. The two features of a significant eccentricity of the orbit and of a fairly high density are fairly uncommon for a hot Jupiter. The high density is, however, consistent with a model of contraction of a planet at this mass, given the age of the system. On the other hand, at such an age, circularization is expected to be completed. In fact, we show that for this planetary mass and orbital distance, any initial eccentricity should not totally vanish after 7 Gyr, as long as the tidal quality factor Qp is more than a few 105, a value that is the lower bound of the usually expected range. Even if CoRoT-23b features a density and an eccentricity that are atypical of a hot Jupiter, it is thus not an enigmatic object. © 2012 ESO.Bayesian quadrature for ratios
Journal of Machine Learning Research 22 (2012) 832-840
Abstract:
We describe a novel approach to quadrature for ratios of probabilistic integrals, such as are used to compute posterior probabilities. This approach offers performance superior to Monte Carlo methods by exploiting a Bayesian quadrature framework. We improve upon previous Bayesian quadrature techniques by explicitly modelling the nonnegativity of our integrands, and the correlations that exist between them. It offers most where the integrand is multi-modal and expensive to evaluate. We demonstrate the efficacy of our method on data from the Kepler space telescope.Time domain astronomy from Dome C: Results from ASTEP
Proceedings of the International Astronomical Union 8:S288 (2012) 218-225
Abstract:
ASTEP (Antarctic Search for Transiting Exo Planets) is a research program funded mainly by French ANR grants and by the French Polar Institute (IPEV), dedicated to the photometric study of exoplanetary transits from Antarctica. The preliminary pathfinder instrument ASTEP-South is described in another communication (Crouzet et al., these proceedings), and we focus in this presentation on the main instrument of the ASTEP program: ASTEP-400, a 40 cm robotized and thermally-controlled photometric telescope operated from the French-Italian Concordia station (Dome C, Antarctica). ASTEP-400 has been installed at Concordia during the 2009-2010 summer campaign. Since, the telescope has been operated in nominal conditions during 2010 and 2011 winters, and the 2012 winterover is presently in progress. Data from the first two winter campaigns are available and processed. We give a description of the ASTEP-400 telescope from the mechanical, optical and thermal point of view. Control and software issues are also addressed. We end with a discussion of some astronomical results obtained with ASTEP-400. Copyright © 2013 International Astronomical Union.Two years of polar winter observations with the ASTEP400 telescope
Proceedings of SPIE - The International Society for Optical Engineering 8444 (2012)