The Monitor project: Rotation of low-mass stars in the open cluster M34
Monthly Notices of the Royal Astronomical Society 370:2 (2006) 954-974
Abstract:
We report on the results of a V- and i-band time-series photometric survey of M34 (NGC 1039) using the Wide Field Camera (WFC) on the Isaac Newton Telescope (INT), achieving better than 1 per cent precision per data point for 13 lsim; i ≲ 17. Candidate cluster members were selected from a V versus V - I colour-magnitude diagram over 14 < V < 24 (0.12 ≲ M/M⊙ 1.0), finding 714 candidates, of which we expect ∼400 to be real cluster members (taking into account contamination from the field). The mass function was computed, and found to be consistent with a lognormal distribution in dN/d log M. Searching for periodic variable objects in the candidate members gave 105 detections over the mass range 0.25 < M/M⊙ < 1.0. The distribution of rotation periods for 0.4 < M/M⊙ < 1.0 was found to peak at ∼7 d, with a tail of fast rotators down to periods of ∼0.8 d. For 0.25 < M/M⊙ < 0.4 we found a peak at short periods, with a lack of slow rotators (e.g. P ≳ 5 d), consistent with the work of other authors at very low masses. Our results are interpreted in the context of previous work, finding that we reproduce the same general features in the rotational period distributions. A number of rapid rotators were found with velocities ∼ a factor of 2 lower than in the Pleiades, consistent with models of angular momentum evolution assuming solid body rotation without needing to invoke core-envelope decoupling. © 2006 RAS.The life of stars and their planets
European Space Agency, (Special Publication) ESA SP (2005) 99-104
Abstract:
We lack a reliable scenario for the formation and evolution of stars and their planetary systems, involving key factors such as magnetic fields and turbulence. We present the case for a mission concept that will clarify these problems and give us a global view of the evolution of combined star and planetary systems. This will be achieved by simultaneously addressing the search for planetary transits in front of a large number of stars, including many nearby stars, the study of their internal structure and evolution via asteroseismology, and that of their magnetic activity, via UV monitoring.Comparative blind test of five planetary transit detection algorithms on realistic synthetic light curves
Astronomy and Astrophysics 437:1 (2005) 355-368
Abstract:
Because photometric surveys of exoplanet transits are very promising sources of future discoveries, many algorithms are being developed to detect transit signals in stellar light curves. This paper compares such algorithms for the next generation of space-based transit detection surveys like CoRoT, Kepler, and Eddington, Five independent analyses of a thousand synthetic light curves are presented. The light curves were produced with an end-to-end instrument simulator and include stellar microvariability and a varied sample of stellar and planetary transits diluted within a much larger set of light curves. The results show that different algorithms perform quite differently, with varying degrees of success in detecting real transits and avoiding false positives. We also find that the detection algorithm alone does not make all the difference, as the way the light curves are filtered and detrended beforehand also has a strong impact on the detection limit and on the false alarm rate. The microvariability of sun-like stars is a limiting factor only in extreme cases, when the fluctuation amplitudes are large and the star is faint. In the majority of cases it does not prevent detection of planetary transits. The most sensitive analysis is performed with periodic box-shaped detection filters. False positives are method-dependent, which should allow reduction of their detection rate in real surveys. Background eclipsing binaries are wrongly identified as planetary transits in most cases, a result which confirms that contamination by background stars is the main limiting factor. With parameters simulating the CoRoT mission, our detection test indicates that the smallest detectable planet radius is on the order of 2 Earth radii for a 10-day orbital period planet around a KO dwarf. © ESO 2005.Planetary transits and stellar variability
(2005)
Practical planet prospecting
Monthly Notices of the Royal Astronomical Society 350:1 (2004) 331-345