Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Juno Jupiter image

Dr Bobby Antonio

Postdoctoral Research Assistant in Climate Physics

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Atmospheric processes
bobby.antonio@physics.ox.ac.uk
Robert Hooke Building, room F50
  • About
  • Publications

Seasonal forecasting using the GenCast probabilistic machine learning model

Climate Dynamics Springer Nature

Authors:

Robert Antonio, Kristian Strommen, Hannah Christensen

Abstract:

Machine-learnt weather prediction (MLWP) models are now well established as being competitive with conventional numerical weather prediction (NWP) models in the medium range. However, there is still much uncertainty as to how this performance extends to longer timescales, where interactions with slower components of the earth system become important. We take GenCast, a state-of-the-art probabilistic MLWP model, and apply it to the task of seasonal forecasting with prescribed sea surface temperature (SST), by providing anomalies persisted over climatology (GenCast-Persisted) or forcing with observed SSTs (GenCastForced). The forecasts are compared to the European Centre for Medium-Range Weather Forecasts seasonal forecasting system, SEAS5. Our results indicate that, despite being trained at short timescales, GenCast-Persisted produces much of the correct precipitation patterns in response to El Ni˜no and La Ni˜na events, with several erroneous patterns in GenCast-Persisted corrected with GenCast-Forced. The uncertainty in precipitation response, as represented by the ensemble, compares favourably to SEAS5. Whilst SEAS5 achieves superior skill in the tropics for 2-metre temperature and mean sea level pressure (MSLP), GenCast-Persisted achieves higher skill in some areas in higher latitudes, including mountainous areas, with notable improvements for MSLP in particular; this is reflected in a slightly higher correlation with the observed NAO index. Reliability diagrams indicate that GenCast-Persisted has little skill relative to climatology, whilst GenCast-Forced produces forecasts with reliability comparable to SEAS5. These results provide an indication of the potential of MLWP models similar to GenCast for the ‘full’ seasonal forecasting problem, where the atmospheric model is coupled to ocean, land and cryosphere models.
Details from ORA

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet