Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

HENRIK AUESTAD

DPhil candidate

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate dynamics
henrik.auestad@physics.ox.ac.uk
Atmospheric Physics Clarendon Laboratory, room 209h
  • About
  • Publications

The Latent Heating Feedback on the Mid‐Latitude Circulation

Geophysical Research Letters American Geophysical Union (AGU) 52:18 (2025) e2025GL116437

Authors:

Henrik Auestad, Abel Shibu, Paulo Ceppi, Tim Woollings

Abstract:

<jats:title>Abstract</jats:title><jats:p>Midlatitude storms transport warm and moist air poleward and upward, releasing latent heat. Latent heating is thus organized by the circulation but then modifies temperature gradients and winds, constituting a nonlinear feedback. We define the latent heating feedback as the effects that arise from latent heating being coupled with the circulation. Because of its nonlinearity, the climatic effects of this feedback are difficult to isolate and remain poorly understood. By decoupling latent heating from the circulation in an atmospheric general circulation model, we show that the latent heating feedback enhances storm track eddy diffusivity, modifying eddy heat fluxes beyond changes in mean baroclinicity. Simultaneously, tracked storms occur at lower latitudes, intensify more, and propagate further poleward, while the subtropical jet strengthens as coupled latent heating preserves lower latitude baroclinicity. The feedback response supports the idea that diabatic effects cause the “too zonal, too equatorward” storm track biases in climate models.</jats:p>
More details from the publisher

The latent heating feedback on the mid-latitude circulation

(2025)

Authors:

Henrik Auestad, Abel Shibu, Paulo Ceppi, Tim Woollings
More details from the publisher

Spatio-temporal averaging of jets obscures the reinforcement of baroclinicity by latent heating

Weather and Climate Dynamics Copernicus Publications 5:4 (2024) 1269-1286

Authors:

Henrik Auestad, Clemens Spensberger, Andrea Marcheggiani, Paulo Ceppi, Thomas Spengler, Tim Woollings

Abstract:

Latent heating modifies the jet stream by modifying the vertical geostrophic wind shear, thereby altering the potential for baroclinic development. Hence, correctly representing diabatic effects is important for modelling the mid-latitude atmospheric circulation and variability. However, the direct effects of diabatic heating remain poorly understood. For example, there is no consensus on the effect of latent heating on the cross-jet temperature contrast. We show that this disagreement is attributable to the choice of spatio-temporal averaging. Jet representations relying on averaged wind tend to have the strongest latent heating on the cold flank of the jet, thus weakening the cross-jet temperature contrast. In contrast, jet representations reflecting the two-dimensional instantaneous wind field have the strongest latent heating on the warm flank of the jet. Furthermore, we show that latent heating primarily occurs on the warm flank of poleward directed instantaneous jets, which is the case for all storm tracks and seasons.
More details from the publisher
Details from ORA
More details

Spatio-temporal filtering of jets obscures the reinforcement of baroclinicity by latent heating

Authors:

Henrik Auestad, Clemens Spensberger, Andrea Marcheggiani, Paulo Ceppi, Thomas Spengler, Tim Woollings
More details from the publisher

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet