Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

HENRIK AUESTAD

DPhil candidate

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate dynamics
henrik.auestad@physics.ox.ac.uk
Atmospheric Physics Clarendon Laboratory, room 209h
  • About
  • Publications

The Latent Heating Feedback on the Mid‐Latitude Circulation

Geophysical Research Letters Wiley 52:18 (2025) e2025GL116437

Authors:

Henrik Auestad, Abel Shibu, Paulo Ceppi, Tim Woollings

Abstract:

Plain Language Summary: Midlatitude storms transport water vapor poleward and upward. When ascending, the air cools, causing the vapor to condense, releasing latent heat. The latent heating boosts the ascent in which it occurs and amplifies the storms originally responsible for the heating. This circular chain of events couples latent heating and storms in a nonlinear relationship we call the latent heating feedback. We simulate an atmosphere where latent heating is static and not a consequence of warm, moist air ascending. Comparing this to an atmosphere with realistic latent heating, we show that realistic latent heating leads to more intense storms traveling further poleward, especially west of North America and Europe. Simultaneously, the longitudinally averaged jet streams and storms respond by retracting toward the equator, leaving reduced westerlies and a double jet tendency over North America and Europe. Previous works tend to focus on the effect of latent heating on the average atmospheric state. Our work shows that this effect is only part of the story and that the latent heating effect on storms directly causes regional differences that climate models struggle with.
More details from the publisher
Details from ORA

The latent heating feedback on the mid-latitude circulation

(2025)

Authors:

Henrik Auestad, Abel Shibu, Paulo Ceppi, Tim Woollings
More details from the publisher

Spatio-temporal averaging of jets obscures the reinforcement of baroclinicity by latent heating

Weather and Climate Dynamics Copernicus Publications 5:4 (2024) 1269-1286

Authors:

Henrik Auestad, Clemens Spensberger, Andrea Marcheggiani, Paulo Ceppi, Thomas Spengler, Tim Woollings

Abstract:

Latent heating modifies the jet stream by modifying the vertical geostrophic wind shear, thereby altering the potential for baroclinic development. Hence, correctly representing diabatic effects is important for modelling the mid-latitude atmospheric circulation and variability. However, the direct effects of diabatic heating remain poorly understood. For example, there is no consensus on the effect of latent heating on the cross-jet temperature contrast. We show that this disagreement is attributable to the choice of spatio-temporal averaging. Jet representations relying on averaged wind tend to have the strongest latent heating on the cold flank of the jet, thus weakening the cross-jet temperature contrast. In contrast, jet representations reflecting the two-dimensional instantaneous wind field have the strongest latent heating on the warm flank of the jet. Furthermore, we show that latent heating primarily occurs on the warm flank of poleward directed instantaneous jets, which is the case for all storm tracks and seasons.
More details from the publisher
Details from ORA
More details

Spatio-temporal filtering of jets obscures the reinforcement of baroclinicity by latent heating

Authors:

Henrik Auestad, Clemens Spensberger, Andrea Marcheggiani, Paulo Ceppi, Thomas Spengler, Tim Woollings
More details from the publisher

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet