Cosmology using numerical relativity
Living Reviews in Relativity Springer 28:1 (2025) 5
Abstract:
This review is an up-to-date account of the use of numerical relativity to study dynamical, strong-gravity environments in a cosmological context. First, we provide a gentle introduction into the use of numerical relativity in solving cosmological spacetimes, aimed at both cosmologists and numerical relativists. Second, we survey the present body of work, focusing on general relativistic simulations, organised according to the cosmological history—from cosmogenesis, through the early hot Big Bang, to the late-time evolution of the universe. We discuss the present state-of-the-art, and suggest directions in which future work can be fruitfully pursued.Symmetry restoration and vacuum decay from accretion around black holes
Physical Review D American Physical Society (APS) 111:4 (2025) ARTN L041501
Abstract:
Vacuum decay and symmetry breaking play an important role in the fundamental structure of the matter and the evolution of the Universe. In this work we study how the purely classical effect of accretion of fundamental fields onto black holes can lead to shells of symmetry restoration in the midst of a symmetry broken phase. We also show how it can catalyze vacuum decay, forming a bubble that expands asymptotically at the speed of light. These effects offer an alternative, purely classical mechanism to quantum tunneling for seeding phase transitions in the Universe.GRTresna: An open-source code to solve the initial data constraints in numerical relativity
ArXiv 2501.13046 (2025)
Robustness of inflation to kinetic inhomogeneities
Journal of Cosmology and Astroparticle Physics IOP Publishing 2025:01 (2025) 050
Abstract:
We investigate the effects of large inhomogeneities in both the inflaton field and its momentum. We find that in general, large kinetic perturbations reduce the number of e-folds of inflation. In particular, we observe that inflationary models with sub-Planckian characteristic scales are not robust even to kinetic energy densities that are sub-dominant to the potential energy density, unless the initial field configuration is sufficiently far from the minimum. This strengthens the results of our previous work. In inflationary models with super-Planckian characteristic scales, despite a reduction in the number of e-folds, inflation is robust even when the potential energy density is initially sub-dominant. For the cases we study, the robustness of inflation strongly depends on whether the inflaton field is driven into the reheating phase by the inhomogeneous scalar dynamics.Self-interacting scalar dark matter around binary black holes
Physical Review D American Physical Society (APS) 110:8 (2024) 83011