Physics potentials with the second Hyper-Kamiokande detector in Korea
Progress of Theoretical and Experimental Physics Oxford University Press 2018:6 (2018)
Abstract:
Hyper-Kamiokande consists of two identical water-Cherenkov detectors of total 520~kt with the first one in Japan at 295~km from the J-PARC neutrino beam with 2.5$^{\textrm{o}}$ Off-Axis Angles (OAAs), and the second one possibly in Korea in a later stage. Having the second detector in Korea would benefit almost all areas of neutrino oscillation physics mainly due to longer baselines. There are several candidate sites in Korea with baselines of 1,000$\sim$1,300~km and OAAs of 1$^{\textrm{o}}$$\sim$3$^{\textrm{o}}$. We conducted sensitivity studies on neutrino oscillation physics for a second detector, either in Japan (JD $\times$ 2) or Korea (JD + KD) and compared the results with a single detector in Japan. Leptonic CP violation sensitivity is improved especially when the CP is non-maximally violated. The larger matter effect at Korean candidate sites significantly enhances sensitivities to non-standard interactions of neutrinos and mass ordering determination. Current studies indicate the best sensitivity is obtained at Mt. Bisul (1,088~km baseline, $1.3^\circ$ OAA). Thanks to a larger (1,000~m) overburden than the first detector site, clear improvements to sensitivities for solar and supernova relic neutrino searches are expected.Measurement of the single pi(0) production rate in neutral current neutrino interactions on water
Physical Review D American Physical Society 97:3 (2018) 032002
Abstract:
The single π0 production rate in neutral current neutrino interactions on water in a neutrino beam with a peak neutrino energy of 0.6 GeV has been measured using the PØD, one of the subdetectors of the T2K near detector. The production rate was measured for data taking periods when the PØD contained water (2.64×1020 protons-on-target) and also periods without water (3.49×1020 protons-on-target). A measurement of the neutral current single π0 production rate on water is made using appropriate subtraction of the production rate with water in from the rate with water out of the target region. The subtraction analysis yields 106±41±69 signal events where the uncertainties are statistical (stat.) and systematic (sys.) respectively. This is consistent with the prediction of 157 events from the nominal simulation. The measured to expected ratio is 0.68±0.26(stat)±0.44(sys)±0.12(flux). The nominal simulation uses a flux integrated cross section of 7.63×10-39 cm2 per nucleon with an average neutrino interaction energy of 1.3 GeV.The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector
EUROPEAN PHYSICAL JOURNAL C 78:1 (2018) ARTN 82
First measurement of the nu(mu) charged-current cross section on a water target without pions in the final state
Physical Review D American Physical Society 97:1 (2018) 012001
Abstract:
This paper reports the first differential measurement of the charged-current interaction cross section of νμ on water with no pions in the final state. This flux-averaged measurement has been made using the T2K experiment’s off-axis near detector, and is reported in doubly differential bins of muon momentum and angle. The flux-averaged total cross section in a restricted region of phase space was found to be σ=(0.95±0.08(stat)±0.06(det syst)±0.04(model syst)±0.08(flux))×10^−38 cm^2/n.Measurement of cosmic-ray reconstruction efficiencies in the MicroBooNE LArTPC using a small external cosmic-ray counter
JOURNAL OF INSTRUMENTATION 12 (2017) ARTN P12030