Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Insertion of STC into TRT at the Department of Physics, Oxford
Credit: CERN

Giles Barr

Professor of Physics

Sub department

  • Particle Physics

Research groups

  • Accelerator Neutrinos
Giles.Barr@physics.ox.ac.uk
Telephone: 01865 (2)73446
Denys Wilkinson Building, room 664a
  • About
  • Publications

Search for sterile neutrinos mixing with muon neutrinos in MINOS

Physical Review Letters American Physical Society 117:15 (2016) 151803

Authors:

P Adamson, I Anghel, A Aurisano, Giles Barr, M Bishai, A Blake, GJ Bock, D Bogert, SV Cao, TJ Carroll, CM Castromonte, R Chen, S Childress, JA Coelho, L Corwin, D Cronin-Hennessy, JK de Jong, S De Rijck, AV Devan, NE Devenish, MV Diwan, CO Escobar, JJ Evans, E Falk, GJ Feldman, W Flanagan, MV Frohne, M Gabrielyan, HR Gallagher, S Germani, RA Gomes, MC Goodman, P Gouffon, N Graf, R Gran, K Grzelak, A Habig, SR Hahn, J Hartnell, R Hatcher, A Holin, J Huang, J Hylen, GM Irwin, Z Isvan, C James, D Jensen, T Kafka, SM Kasahara, G Koizumi

Abstract:

We report results of a search for oscillations involving a light sterile neutrino over distances of 1.04 and 735 km in a ν_{μ}-dominated beam with a peak energy of 3 GeV. The data, from an exposure of 10.56×10^{20} protons on target, are analyzed using a phenomenological model with one sterile neutrino. We constrain the mixing parameters θ_{24} and Δm_{41}^{2} and set limits on parameters of the four-dimensional Pontecorvo-Maki-Nakagawa-Sakata matrix, |U_{μ4}|^{2} and |U_{τ4}|^{2}, under the assumption that mixing between ν_{e} and ν_{s} is negligible (|U_{e4}|^{2}=0). No evidence for ν_{μ}→ν_{s} transitions is found and we set a world-leading limit on θ_{24} for values of Δm_{41}^{2}≲1  eV^{2}.
More details from the publisher
Details from ORA
More details
More details

Measurement of nuclear effects in neutrino interactions with minimal dependence on neutrino energy

Phys. Rev. C94 (2016) 1

Authors:

X-G Lu, L Pickering, S Dolan, G Barr, D Coplowe, Y Uchida, D Wark, MO Wascko, A Weber, T Yuan
More details from the publisher
Details from ORA
More details
Details from ArXiV

Measurement of double-differential muon neutrino charged-current interactions on C8H8 without pions in the final state using the T2K off-axis beam

Physical Review D American Physical Society 93:11 (2016) 112012

Authors:

Giles D Barr, Debra Dewhurst, Stephen Dolan, Kirsty E Duffy, Abraham Jacob, Xianguo Lu, Raj Shah, Antonin Vacheret, David L Wark, Alfons Weber

Abstract:

We report the measurement of muon neutrino charged-current interactions on carbon without pions in the final state at the T2K beam energy using 5.734×1020 protons on target. For the first time the measurement is reported as a flux-integrated, double-differential cross section in muon kinematic variables (cosθμ, pμ), without correcting for events where a pion is produced and then absorbed by final state interactions. Two analyses are performed with different selections, background evaluations and cross-section extraction methods to demonstrate the robustness of the results against biases due to model-dependent assumptions. The measurements compare favorably with recent models which include nucleon-nucleon correlations but, given the present precision, the measurement does not distinguish among the available models. The data also agree with Monte Carlo simulations which use effective parameters that are tuned to external data to describe the nuclear effects. The total cross section in the full phase space is σ=(0.417±0.047(syst)±0.005(stat))×10-38 cm2 nucleon-1 and the cross section integrated in the region of phase space with largest efficiency and best signal-over-background ratio (cosθμ>0.6 and pμ>200 MeV) is σ=(0.202±0.036(syst)±0.003(stat))×10-38 cm2 nucleon-1.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Measurement of muon antineutrino oscillations with an accelerator-produced off-axis beam.

Physical Review Letters American Physical Society 116:18 (2016) 181801

Authors:

Giles D Barr, Debra Dewhurst, Stephen Dolan, Kirsty E Duffy, Abraham Jacob, Xianguo Lu, Raj Shah, Antonin Vacheret, David L Wark, Alfons Weber

Abstract:

T2K reports its first measurements of the parameters governing the disappearance of ν¯μ in an off-axis beam due to flavor change induced by neutrino oscillations. The quasimonochromatic ν¯μ beam, produced with a peak energy of 0.6 GeV at J-PARC, is observed at the far detector Super-Kamiokande, 295 km away, where the ν¯μ survival probability is expected to be minimal. Using a data set corresponding to 4.01×1020 protons on target, 34 fully contained μ-like events were observed. The best-fit oscillation parameters are sin2(θ¯23)=0.45 and |Δm¯232|=2.51×10−3  eV2 with 68% confidence intervals of 0.38–0.64 and 2.26–2.80×10−3  eV2, respectively. These results are in agreement with existing antineutrino parameter measurements and also with the νμ disappearance parameters measured by T2K.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Measurement of the muon neutrino inclusive charged-current cross section in the energy range of 1–3 GeV with the T2K INGRID detector

Physical Review D American Physical Society 93:7 (2016) 072002

Authors:

Giles D Barr, Debra Dewhurst, Stephen Dolan, Kirsty E Duffy, Abraham Jacob, Xianguo Lu, Raj Shah, Antonin Vacheret, David L Wark, Alfons Weber

Abstract:

We report a measurement of the νμ-nucleus inclusive charged-current cross section (=σcc) on iron using data from the INGRID detector exposed to the J-PARC neutrino beam. The detector consists of 14 modules in total, which are spread over a range of off-axis angles from 0° to 1.1°. The variation in the neutrino energy spectrum as a function of the off-axis angle, combined with event topology information, is used to calculate this cross section as a function of neutrino energy. The cross section is measured to be σcc(1.1 GeV)=1.10±0.15 (10-38 cm2/nucleon), σcc(2.0 GeV)=2.07±0.27 (10-38 cm2/nucleon), and σcc(3.3 GeV)=2.29±0.45 (10-38 cm2/nucleon), at energies of 1.1, 2.0, and 3.3 GeV, respectively. These results are consistent with the cross section calculated by the neutrino interaction generators currently used by T2K. More importantly, the method described here opens up a new way to determine the energy dependence of neutrino-nucleus cross sections.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • Current page 17
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet