Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
ESO 3.6m telescope, Oscar for escale

ESO 3.6m telescope, Oscar for escale.

Credit: Oscar Barragán

Dr. Oscar Barragan Villanueva

Postdoctoral Research Assistant

Research theme

  • Astronomy and astrophysics
  • Exoplanets and planetary physics

Sub department

  • Astrophysics

Research groups

  • Exoplanets and Stellar Physics
oscar.barragan@physics.ox.ac.uk
Personal webpage
Github
Publications
ORCID:0000-0003-0563-0493
  • About
  • Current projects
  • Publications
logo pyaneti
Pyaneti

pyaneti is a code that allows to fit multi-planet signals in RV and photometric data

Check the code here

Planet Hunters TESS. V. A Planetary System Around a Binary Star, Including a Mini-Neptune in the Habitable Zone

Astronomical Journal IOP Publishing 167:5 (2024) 241

Authors:

Nora L Eisner, Samuel K Grunblatt, Oscar Barragán, Thea H Faridani, Chris Lintott, Suzanne Aigrain, Cole Johnston, Ian R Mason, Keivan G Stassun, Megan Bedell, Andrew W Boyle, David R Ciardi, Catherine A Clark, Guillaume Hebrard, David W Hogg, Steve B Howell, Baptiste Klein, Joe Llama, Joshua N Winn, Lily L Zhao, Joseph M Akana Murphy, Corey Beard, Casey L Brinkman, Ashley Chontos, Safaa Alhassan, Daval J Amratlal, Lais I Antonel, Simon LS Bentzen, Milton KD Bosch, David Bundy, Itayi Chitsiga, Jérôme F Delaunay, Xavier Doisy, Richard Ferstenou

Abstract:

We report on the discovery and validation of a transiting long-period mini-Neptune orbiting a bright (V = 9.0 mag) G dwarf (TOI 4633; R = 1.05 R ⊙, M = 1.10 M ⊙). The planet was identified in data from the Transiting Exoplanet Survey Satellite by citizen scientists taking part in the Planet Hunters TESS project. Modelling of the transit events yields an orbital period of 271.9445 ± 0.0040 days and radius of 3.2 ± 0.20 R ⊕. The Earth-like orbital period and an incident flux of 1.56−0.16+0.20 F ⊕ places it in the optimistic habitable zone around the star. Doppler spectroscopy of the system allowed us to place an upper mass limit on the transiting planet and revealed a non-transiting planet candidate in the system with a period of 34.15 ± 0.15 days. Furthermore, the combination of archival data dating back to 1905 with new high angular resolution imaging revealed a stellar companion orbiting the primary star with an orbital period of around 230 yr and an eccentricity of about 0.9. The long period of the transiting planet, combined with the high eccentricity and close approach of the companion star makes this a valuable system for testing the formation and stability of planets in binary systems.
More details from the publisher
Details from ORA
More details

republic: A variability-preserving systematic-correction algorithm for PLATO ’s multi-camera light curves

RAS Techniques and Instruments Oxford University Press 3:1 (2024) 198-208

Authors:

Oscar Barragán, Suzanne Aigrain, James McCormac

Abstract:

Space-based photometry missions produce exquisite light curves that contain a wealth of stellar variability on a wide range of time-scales. Light curves also typically contain significant instrumental systematics – spurious, non-astrophysical trends that are common, in varying degrees, to many light curves. Empirical systematics-correction approaches using the information in the light curves themselves have been very successful, but tend to suppress astrophysical signals, particularly on longer time-scales. Unlike its predecessors, the PLAnetary Transits and Oscillations of stars (PLATO) mission will use multiple cameras to monitor the same stars. We present republic, a novel systematics-correction algorithm which exploits this multi-camera configuration to correct systematics that differ between cameras, while preserving the component of each star’s signal that is common to all cameras, regardless of time-scale. Through simulations with astrophysical signals (star spots and planetary transits), Kepler-like errors, and white noise, we demonstrate republic’s ability to preserve long-term astrophysical signals usually lost in standard correction techniques. We also explore republic’s performance with different number of cameras and systematic properties. We conclude that republic should be considered a potential complement to existing strategies for systematic correction in multi-camera surveys, with its utility contingent upon further validation and adaptation to the specific characteristics of the PLATO mission data.
More details from the publisher
Details from ORA

TOI-837b is a Young Saturn-sized Exoplanet with a Massive 70 $M_{\oplus}$ Core

(2024)

Authors:

Oscar Barragán, Haochuan Yu, Alix Violet Freckelton, Annabella Meech, Michael Cretignier, Annelies Mortier, Suzanne Aigrain, Baptiste Klein, Niamh K O'Sullivan, Edward Gillen, Louise Dyregaard Nielsen, Manuel Mallorquín, Norbert Zicher
More details from the publisher
Details from ArXiV

REPUBLIC: A variability-preserving systematic-correction algorithm for PLATO's multi-camera light curves

(2024)

Authors:

Oscar Barragán, Suzanne Aigrain, James McCormac
More details from the publisher
Details from ArXiV

Revisiting K2-233 spectroscopic time-series with multidimensional Gaussian processes

Monthly Notices of the Royal Astronomical Society Oxford University Press 522:3 (2023) 3458-3471

Authors:

Oscar Barragan Villanueva, Edward Gillen, Suzanne Aigrain, Annabella Meech, Baptiste Klein, Louise Dyregaard Nielsen, Haochuan Yu, Niamh K O'Sullivan, Belinda A Nicholson, Jorge Lillo-Box

Abstract:

Detecting planetary signatures in radial velocity time-series of young stars is challenging due to their inherently strong stellar activity. However, it is possible to learn information about the properties of the stellar signal by using activity indicators measured from the same stellar spectra used to extract radial velocities. In this manuscript, we present a reanalysis of spectroscopic High Accuracy Radial Velocity Planet Searcher data of the young star K2-233, which hosts three transiting planets. We perform a multidimensional Gaussian process regression on the radial velocity and the activity indicators to characterize the planetary Doppler signals. We demonstrate, for the first time on a real data set, that the use of a multidimensional Gaussian process can boost the precision with which we measure the planetary signals compared to a one-dimensional Gaussian process applied to the radial velocities alone. We measure the semi-amplitudes of K2-233 b, c, and d as 1.31+0.81−0.74, 1.81+0.71−0.67, and 2.72+0.66−0.70 m s−1, which translate into planetary masses of 2.4+1.5−1.3, 4.6+1.8−1.7, and 10.3+2.4−2.6 M⊕, respectively. These new mass measurements make K2-233 d a valuable target for transmission spectroscopy observations with JWST. K2-233 is the only young system with two detected inner planets below the radius valley and a third outer planet above it. This makes it an excellent target to perform comparative studies, to inform our theories of planet evolution, formation, migration, and atmospheric evolution.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet