Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
SNO+

Steve Biller

Professor of Particle Physics

Sub department

  • Particle Physics

Research groups

  • SNO+
Steven.Biller@physics.ox.ac.uk
Telephone: 01865 (2)73386
Denys Wilkinson Building, room 568a
Personal Website
  • About
  • Publications

Current status and future prospects of the SNO+ experiment

Advances in High Energy Physics Hindawi Publishing Corporation 2016 (2016) 6194250-6194250

Authors:

Steven D Biller, Luca A Cavalli, Jack T Dunger, Nicholas A Jelley, Christopher Jones, Peter G Jones, Jeffrey Lidgard, Krishana Majumdar, Armin Reichold, Laura Segui, Jeffrey C-L Tseng

Abstract:

SNO+ is a large liquid scintillator-based experiment located 2km underground at SNOLAB, Sudbury, Canada. It reuses the Sudbury Neutrino Observatory detector, consisting of a 12m diameter acrylic vessel which will be filled with about 780 tonnes of ultra-pure liquid scintillator. Designed as a multipurpose neutrino experiment, the primary goal of SNO+ is a search for the neutrinoless double-beta decay (0$\nu\beta\beta$) of 130Te. In Phase I, the detector will be loaded with 0.3% natural tellurium, corresponding to nearly 800 kg of 130Te, with an expected effective Majorana neutrino mass sensitivity in the region of 55-133 meV, just above the inverted mass hierarchy. Recently, the possibility of deploying up to ten times more natural tellurium has been investigated, which would enable SNO+ to achieve sensitivity deep into the parameter space for the inverted neutrino mass hierarchy in the future. Additionally, SNO+ aims to measure reactor antineutrino oscillations, low-energy solar neutrinos, and geoneutrinos, to be sensitive to supernova neutrinos, and to search for exotic physics. A first phase with the detector filled with water will begin soon, with the scintillator phase expected to start after a few months of water data taking. The 0$\nu\beta\beta$ Phase I is foreseen for 2017.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Purification of telluric acid for SNO+ neutrinoless double-beta decay search

Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment Elsevier 795 (2015) 132-139

Authors:

S Hans, R Rosero, L Hu, O Chkvorets, WT Chan, S Guan, W Beriguete, A Wright, R Ford, MC Chen, S Biller, M Yeh
More details from the publisher
More details

Another look at confidence intervals: Proposal for a more relevant and transparent approach

Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment Elsevier 774 (2015) 103-119

Authors:

Steven D Biller, Scott M Oser
More details from the publisher

SNO+ with Tellurium

Physics Procedia Elsevier 61 (2015) 205-210
More details from the publisher
More details

A Search for Astrophysical Burst Signals at the Sudbury Neutrino Observatory

ArXiv 1309.091 (2013)

Authors:

B Aharmim, SN Ahmed, AE Anthony, N Barros, EW Beier, A Bellerive, B Beltran, M Bergevin, SD Biller, K Boudjemline, MG Boulay, B Cai, YD Chan, D Chauhan, M Chen, BT Cleveland, GA Cox, X Dai, H Deng, JA Detwiler, M DiMarco, MD Diamond, PJ Doe, G Doucas, P-L Drouin, FA Duncan, M Dunford, ED Earle, SR Elliott, HC Evans, GT Ewan, J Farine, H Fergani, F Fleurot, RJ Ford, JA Formaggio, N Gagnon, JTM Goon, K Graham, E Guillian, S Habib, RL Hahn, AL Hallin, ED Hallman, PJ Harvey, R Hazama, WJ Heintzelman, J Heise, RL Helmer, A Hime, C Howard, M Huang, P Jagam, B Jamieson, NA Jelley, M Jerkins, KJ Keeter, JR Klein, LL Kormos, M Kos, C Kraus, CB Krauss, A Krueger, T Kutter, CCM Kyba, R Lange, J Law, IT Lawson, KT Lesko, JR Leslie, I Levine, JC Loach, R MacLellan, S Majerus, HB Mak, J Maneira, R Martin, N McCauley, AB McDonald, SR McGee, ML Miller, B Monreal, J Monroe, BG Nickel, AJ Noble, HM O'Keeffe, NS Oblath, RW Ollerhead, GD Orebi Gann, SM Oser, RA Ott, SJM Peeters, AWP Poon, G Prior, SD Reitzner, K Rielage, BC Robertson, RGH Robertson, MH Schwendener, JA Secrest, SR Seibert, O Simard, JJ Simpson, D Sinclair, P Skensved, TJ Sonley, LC Stonehill, G Tesic, N Tolich, T Tsui, R Van Berg, BA VanDevender, CJ Virtue, BL Wall, D Waller, H Wan Chan Tseung, DL Wark, PJS Watson, J Wendland, N West, JF Wilkerson, JR Wilson, JM Wouters, A Wright, M Yeh, F Zhang, K Zuber

Abstract:

The Sudbury Neutrino Observatory (SNO) has confirmed the standard solar model and neutrino oscillations through the observation of neutrinos from the solar core. In this paper we present a search for neutrinos associated with sources other than the solar core, such as gamma-ray bursters and solar flares. We present a new method for looking for temporal coincidences between neutrino events and astrophysical bursts of widely varying intensity. No correlations were found between neutrinos detected in SNO and such astrophysical sources.
More details from the publisher
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Current page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet