Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
The Murriyang radio telescope.

The Murriyang radio telescope.

Dr Joe Bright

Researcher in Radio Astronomy

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • Breakthrough Listen
joe.bright@physics.ox.ac.uk
Telephone: 01865 (2)83125
Denys Wilkinson Building, room 558
  • About
  • Allen Telescope Array Acknowledgements
  • Publications

Relativistic X-ray jets from the black hole X-ray binary MAXI J1820+070

Astrophysical Journal Letters American Astronomical Society 895:2 (2020) L31

Authors:

Mathilde Espinasse, Stephane Corbel, Philip Kaaret, Evangelia Tremou, Giulia Migliori, Richard M Plotkin, Joe Bright, John Tomsick, Anastasios Tzioumis, Robert Fender, Jerome A Orosz, Elena Gallo, Jeroen Homan, Peter G Jonker, James CA Miller-Jones, David M Russell, Sara Motta

Abstract:

The black hole MAXI J1820+070 was discovered during its 2018 outburst and was extensively monitored across the electromagnetic spectrum. Following the detection of relativistic radio jets, we obtained four Chandra X-ray observations taken between 2018 November and 2019 June, along with radio observations conducted with the Very Large Array and MeerKAT arrays. We report the discovery of X-ray sources associated with the radio jets moving at relativistic velocities with a possible deceleration at late times. The broadband spectra of the jets are consistent with synchrotron radiation from particles accelerated up to very high energies (>10 TeV) by shocks produced by the jets interacting with the interstellar medium. The minimal internal energy estimated from the X-ray observations for the jets is ~10^41 erg, significantly larger than the energy calculated from the radio flare alone, suggesting most of the energy is possibly not radiated at small scales but released through late-time interactions.
More details from the publisher
Details from ORA
More details

An extremely powerful long-lived superluminal ejection from the black hole MAXI J1820+070

(2020)

Authors:

JS Bright, RP Fender, SE Motta, DRA Williams, J Moldon, RM Plotkin, JCA Miller-Jones, I Heywood, E Tremou, R Beswick, GR Sivakoff, S Corbel, DAH Buckley, J Homan, E Gallo, AJ Tetarenko, TD Russell, DA Green, D Titterington, PA Woudt, RP Armstrong, PJ Groot, A Horesh, AJ van der Horst, EG Körding, VA McBride, A Rowlinson, RAMJ Wijers
More details from the publisher
Details from ArXiV

The 2018 outburst of BHXB H1743−322 as seen with MeerKAT

Monthly Notices of the Royal Astronomical Society Oxford University Press 491:1 (2019) L28-L33

Authors:

David Williams, R Fender, J Bright, I Heywood, E Tremou, P Woudt, DAH Buckley, S Corbel, M Coriat, T Joseph, L Rhodes, GR Sivakoff, AJVD Horst

Abstract:

In recent years, the black hole candidate X-ray binary system H1743-322 has undergone outbursts and it has been observed with X-ray and radio telescopes. We present 1.3 GHz MeerKAT radio data from the ThunderKAT Large Survey Project on radio transients for the 2018 outburst of H1743-322. We obtain seven detections from a weekly monitoring programme and use publicly available Swift X-ray Telescope and MAXI data to investigate the radio/X-ray correlation of H1743-322 for this outburst. We compare the 2018 outburst with those reported in the literature for this system and find that the X-ray outburst reported is similar to previously reported 'hard-only' outbursts. As in previous outbursts, H1743-322 follows the 'radio-quiet' correlation in the radio/X-ray plane for black hole X-ray binaries, and the radio spectral index throughout the outburst is consistent with the 'radio-quiet' population.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Late-outburst radio flaring in SS Cyg and evidence for a powerful kinetic output channel in cataclysmic variables

Monthly Notices of the Royal Astronomical Society Oxford University Press 490:1 (2019) L76-L80

Authors:

Rob Fender, Joe Bright, Kunal Mooley, James Miller-Jones

Abstract:

Accreting white dwarfs in binary systems known as cataclysmic variables (CVs) have in recent years been shown to produce radio flares during outbursts, qualitatively similar to those observed from neutron star and black hole X-ray binaries, but their ubiquity and energetic significance for the accretion flow has remained uncertain. We present new radio observations of the CV SS Cyg with Arcminute Microkelvin Imager Large Array, which show for the second time late-ouburst radio flaring, in 2016 April. This flaring occurs during the optical flux decay phase, about 10 d after the well-established early-time radio flaring. We infer that both the early- and late-outburst flares are a common feature of the radio outbursts of SS Cyg, albeit of variable amplitudes, and probably of all dwarf novae. We furthermore present new analysis of the physical conditions in the best-sampled late-outburst flare, from 2016 February, which showed clear optical depth evolution. From this we can infer that the synchrotron-emitting plasma was expanding at about 1 per cent of the speed of light, and at peak had a magnetic field of order 1 G and total energy content ≥10 erg. While this result is independent of the geometry of the synchrotron-emitting region, the most likely origin is in a jet carrying away a significant amount of the available accretion power. 33
More details from the publisher
Details from ORA
More details
Details from ArXiV

A detailed radio study of the energetic, nearby and puzzling GRB 171010A

(2019)

Authors:

JS Bright, A Horesh, AJ van der Horst, R Fender, GE Anderson, SE Motta, SB Cenko, DA Green, Y Perrott, D Titterington
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet