Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Professor Andrew Bunker

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
Andy.Bunker@physics.ox.ac.uk
Telephone: 01865 (2)83126
Denys Wilkinson Building, room 702
  • About
  • Publications

Ly$\alpha$ emission in galaxies at $z\simeq5-6$: new insight from JWST into the statistical distributions of Ly$\alpha$ properties at the end of reionization

(2024)

Authors:

Mengtao Tang, Daniel P Stark, Richard S Ellis, Fengwu Sun, Michael Topping, Brant Robertson, Sandro Tacchella, Santiago Arribas, William M Baker, Rachana Bhatawdekar, Kristan Boyett, Andrew J Bunker, Stéphane Charlot, Zuyi Chen, Jacopo Chevallard, Gareth C Jones, Nimisha Kumari, Jianwei Lyu, Roberto Maiolino, Michael V Maseda, Aayush Saxena, Lily Whitler, Christina C Williams, Chris Willott, Joris Witstok
More details from the publisher

The JWST Advanced Deep Extragalactic Survey: Discovery of an Extreme Galaxy Overdensity at z = 5.4 with JWST/NIRCam in GOODS-S

The Astrophysical Journal American Astronomical Society 962:2 (2024) 124

Authors:

Jakob M Helton, Fengwu Sun, Charity Woodrum, Kevin N Hainline, Christopher NA Willmer, George H Rieke, Marcia J Rieke, Sandro Tacchella, Brant Robertson, Benjamin D Johnson, Stacey Alberts, Daniel J Eisenstein, Ryan Hausen, Nina R Bonaventura, Andrew Bunker, Stephane Charlot, Mirko Curti, Emma Curtis-Lake, Tobias J Looser, Roberto Maiolino, Chris Willott, Joris Witstok, Kristan Boyett, Zuyi Chen, Eiichi Egami, Ryan Endsley, Raphael E Hviding, Daniel T Jaffe, Zhiyuan Ji, Jianwei Lyu, Lester Sandles
More details from the publisher
More details

Inside the bubble: exploring the environments of reionisation-era Lyman-α emitting galaxies with JADES and FRESCO⋆

Astronomy & Astrophysics EDP Sciences 682 (2024) a40

Authors:

Joris Witstok, Renske Smit, Aayush Saxena, Gareth C Jones, Jakob M Helton, Fengwu Sun, Roberto Maiolino, Nimisha Kumari, Daniel P Stark, Andrew J Bunker, Santiago Arribas, William M Baker, Rachana Bhatawdekar, Kristan Boyett, Alex J Cameron, Stefano Carniani, Stephane Charlot, Jacopo Chevallard, Mirko Curti, Emma Curtis-Lake, Daniel J Eisenstein, Ryan Endsley, Kevin Hainline, Zhiyuan Ji, Benjamin D Johnson, Tobias J Looser, Erica Nelson, Michele Perna, Hans-Walter Rix, Brant E Robertson, Lester Sandles, Jan Scholtz, Charlotte Simmonds, Sandro Tacchella, Hannah Übler, Christina C Williams, Christopher NA Willmer, Chris Willott
More details from the publisher
More details

A small and vigorous black hole in the early Universe

Nature Nature Research 627:8002 (2024) 59-63

Authors:

Roberto Maiolino, Jan Scholtz, Joris Witstok, Stefano Carniani, Francesco D’Eugenio, Anna de Graaff, Hannah Übler, Sandro Tacchella, Emma Curtis-Lake, Santiago Arribas, Andrew Bunker, Stéphane Charlot, Jacopo Chevallard, Mirko Curti, Tobias J Looser, Michael V Maseda, Timothy D Rawle, Bruno Rodríguez del Pino, Chris J Willott, Eiichi Egami, Daniel J Eisenstein, Kevin N Hainline, Brant Robertson, Christina C Williams, Gareth C Jones

Abstract:

Several theories have been proposed to describe the formation of black hole seeds in the early Universe and to explain the emergence of very massive black holes observed in the first thousand million years after the Big Bang1–3. Models consider different seeding and accretion scenarios4–7, which require the detection and characterization of black holes in the first few hundred million years after the Big Bang to be validated. Here we present an extensive analysis of the JWST-NIRSpec spectrum of GN-z11, an exceptionally luminous galaxy at z = 10.6, revealing the detection of the [Neiv]λ2423 and CII*λ1335 transitions (typical of active galactic nuclei), as well as semi-forbidden nebular lines tracing gas densities higher than 109 cm−3, typical of the broad line region of active galactic nuclei. These spectral features indicate that GN-z11 hosts an accreting black hole. The spectrum also reveals a deep and blueshifted CIVλ1549 absorption trough, tracing an outflow with velocity 800−1,000 km s−1, probably driven by the active galactic nucleus. Assuming local virial relations, we derive a black hole mass of log(MBH/M⊙)=6.2±0.3, accreting at about five times the Eddington rate. These properties are consistent with both heavy seeds scenarios and scenarios considering intermediate and light seeds experiencing episodic super-Eddington phases. Our finding explains the high luminosity of GN-z11 and can also provide an explanation for its exceptionally high nitrogen abundance.
More details from the publisher
Details from ORA
More details
More details

What is the nature of Little Red Dots and what is not, MIRI SMILES edition

(2024)

Authors:

Pablo G Pérez-González, Guillermo Barro, George H Rieke, Jianwei Lyu, Marcia Rieke, Stacey Alberts, Christina Williams, Kevin Hainline, Fengwu Sun, David Puskas, Marianna Annunziatella, William M Baker, Andrew J Bunker, Eiichi Egami, Zhiyuan Ji, Benjamin D Johnson, Brant Robertson, Bruno Rodriguez Del Pino, Wiphu Rujopakarn, Irene Shivaei, Sandro Tacchella, Christopher NA Willmer, Chris Willott
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 37
  • Page 38
  • Page 39
  • Page 40
  • Current page 41
  • Page 42
  • Page 43
  • Page 44
  • Page 45
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet