The star formation rate at redshift one: Ha spectroscopy with CIRPASS
Monthly Notices of the Royal Astronomical Society 370:1 (2006) 331-342
Abstract:
We have conducted an Hα survey of 38 0.77 < z < 1 galaxies over ∼100arcmin2 of the Hubble Deep Field-North and Flanking Fields, to determine star formation rates (SFRs), with the near-IR multi-object spectrograph Cambridge Infrared Panoramic Survey Spectrograph (CIRPASS) on the William Herschel Telescope (WHT). This represents the first successful application of this technique to observing high-redshift galaxies. Stacking the spectra in the rest frame to infer a total SFR for the field, we find a lower limit (uncorrected for dust reddening) on the SFR density at redshift z = 1 of 0.04 M⊙ yr-1 Mpc-3. This implies rapid evolution in the SFR density from z = 0 to 1 which is proportional to (1+ z)3.1 © 2006 RAS.The las campanas infrared survey - V. Keck spectroscopy of a large sample of extremely red objects
Monthly Notices of the Royal Astronomical Society 361:2 (2005) 525-549
Abstract:
We present deep Keck spectroscopy, using the Deep Imaging Multi-Object Spectrograph and the Low-Resolution Imaging Spectrometer spectrographs, of a large and representative sample of 67 extremely red objects (EROs) to H = 20.5 in three fields (SSA22, Chandra Deep Field South and NTT Deep Field) drawn from the Las Campanas Infrared Survey (LCIRS). Using the colour cut (I - H) > 3.0 (Vega magnitudes) adopted in earlier papers in this series, we verify the efficiency of this selection for locating and studying distant old sources. Spectroscopic redshifts are determined for 44 sources, of which only two are contaminating low-mass stars. When allowance is made for incompleteness, the spectroscopic redshift distribution closely matches that predicted earlier on the basis of photometric data. Our spectra are of sufficient quality that we can address the important question of the nature and homogeneity of the z > 0.8 ERO population. A dominant old stellar population is inferred for 75 per cent of our spectroscopic sample, a higher fraction than that seen in smaller, less complete samples with broader photometric selection criteria (e.g. R - K). However, only 28 per cent have spectra with no evidence of recent star formation activity, such as would be expected for a strictly passively evolving population. More than ∼30 per cent of our absorption-line spectra are of the 'E+A' type with prominent Balmer absorption consistent, on average, with mass growth of 5-15 per cent in the past gigayear. We use our spectroscopic redshifts to improve earlier estimates of the spatial clustering of this population as well as to understand the significant field-to-field variation. Our spectroscopy enables us to pinpoint a filamentary structure at z = 1.22 in the Chandra Deep Field South. Overall, our study suggests that the bulk of the ERO population is an established population of clustered massive galaxies undergoing intermittent activity consistent with continued growth over the redshift interval 0.8 < z < 1.6. © 2005 RAS.Near-infrared properties of i-drop galaxies in the Hubble ultra deep field
Monthly Notices of the Royal Astronomical Society 359:3 (2005) 1184-1192
Abstract:
We analyse near-infrared Hubble Space Telescope (HST)/Near-Infrared Camera and Multi-Object Spectrometer F110W (J) and F160W (H) band photometry of a sample of 27 i′-drop candidate z ≃ 6 galaxies in the central region of the HST/Advanced Camera for Surveys Ultra Deep Field. The infrared colours of the 20 objects not affected by near neighbours are consistent with a high-redshift interpretation. This suggests that the low-redshift contamination of this i′-drop sample is smaller than that observed at brighter magnitudes, where values of 10-40 per cent have been reported. The J-H colours are consistent with a slope flat in fOptical and near-infrared integral field spectroscopy of the SCUBA galaxy N2 850.4
Monthly Notices of the Royal Astronomical Society 359:2 (2005) 401-407