Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Michele Cappellari

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • Extremely Large Telescope
michele.cappellari@physics.ox.ac.uk
Telephone: 01865 (2)73647
Denys Wilkinson Building, room 755
  • About
  • Publications

MaNGA DynPop - II. Global stellar population, gradients, and star-formation histories from integral-field spectroscopy of 10K galaxies: link with galaxy rotation, shape, and total-density gradients

Monthly Notices of the Royal Astronomical Society Oxford University Press 526:1 (2023) 1022-1045

Authors:

S Lu, K Zhu, Michele Cappellari, R Li, S Mao, D Xu

Abstract:

This is the second paper of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) Dynamics and stellar Population (DynPop) series, which analyses the global stellar population, radial gradients, and non-parametric star-formation history of ∼10K galaxies from the MaNGA Survey final data release 17 and relates them with dynamical properties of galaxies. We confirm the correlation between the stellar population properties and the stellar velocity dispersion σe, but also find that younger galaxies are more metal-poor at fixed σe. Stellar age, metallicity, and mass-to-light ratio (M∗/L) all decrease with increasing galaxy rotation, while their radial gradients become more negative (i.e. lower value at the outskirts). The exception is the slow rotators, which also appear to have significantly negative metallicity gradients, confirming the mass-metallicity gradient correlation. Massive disc galaxies in the green valley, on the plane, show the most negative age and metallicity gradients, consistent with their old central bulges surrounded by young star-forming discs and metal-poor gas accretion. Galaxies with high σe, steep total mass-density slope, low dark matter fraction, high M∗/L, and high metallicity have the highest star-formation rate at earlier times, and are currently quenched. We also discover a population of low-mass star-forming galaxies with low rotation but physically distinct from the massive slow rotators. A catalogue of these stellar population properties is provided publicly.
More details from the publisher
Details from ORA
More details
More details

Full spectrum fitting with photometry in PPXF: stellar population versus dynamical masses, non-parametric star formation history and metallicity for 3200 LEGA-C galaxies at redshift z ≈ 0.8

Monthly Notices of the Royal Astronomical Society Oxford University Press 526:3 (2023) 3273-3300

Abstract:

I introduce some improvements to the PPXF method, which measures the stellar and gas kinematics, star formation history (SFH) and chemical composition of galaxies. I describe the new optimization algorithm that PPXF uses and the changes I made to fit both spectra and photometry simultaneously. I apply the updated PPXF method to a sample of 3200 galaxies at redshift 0.6 < z < 1 (median z = 0.76, stellar mass M∗ 3 × 1010 M), using spectroscopy from the LEGA-C survey (DR3) and 28-bands photometry from two different sources. I compare the masses from new JAM dynamical models with the PPXF stellar population M∗ and show the latter are more reliable than previous estimates. I use three differentstellar population synthesis(SPS) modelsin PPXF and both photometric sources. I confirm the main trend of the galaxies’ global ages and metallicity [M/H] with stellar velocity dispersion σ∗ (or central density), but I also find that [M/H] depends on age at fixed σ∗. The SFHsreveal a sharp transition from star formation to quenching for galaxies with lg(σ∗/km s−1) 2.3 (σ∗ 200 km s−1), or average mass density within 1 kpc lg(JAM 1 /Mkpc−2) 9.9 (JAM 1 7.9 × 109 M kpc−2), or with [M/H] −0.1, or with Sersic index lg nSer 0.5 (nSer 3.2). However, the transition is smoother as a function of M∗. These results are consistent for two SPS models and both photometric sources, but they differ significantly from the third SPS model, which demonstrates the importance of comparing model assumptions.

More details from the publisher
Details from ORA
More details

WISDOM Project – XVII. Beam-by-beam properties of the molecular gas in early-type galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 525:3 (2023) 4270-4298

Authors:

Thomas G Williams, Fu-Heng Liang, Martin Bureau, Timothy A Davis, Michele Cappellari, Woorak Choi, Jacob S Elford, Satoru Iguchi, Jindra Gensior, Anan Lu, Ilaria Ruffa, Hengyue Zhang

Abstract:

We present a study of the molecular gas of seven early-type galaxies with high angular resolution data obtained as part of the mm-Wave Interferometric Survey of Dark Object Masses (WISDOM) project with the Atacama Large Millimeter/submillimeter Array. Using a fixed spatial-scale approach, we study the mass surface density (Σ) and velocity dispersion (σ) of the molecular gas on spatial scales ranging from 60 to 120 pc. Given the spatial resolution of our data (20–70 pc), we characterize these properties across many thousands of individual sightlines (≈50 000 at our highest physical resolution). The molecular gas along these sightlines has a large range (≈2 dex) of mass surface densities and velocity dispersions ≈40 per cent higher than those of star-forming spiral galaxies. It has virial parameters αvir that depend weakly on the physical scale observed, likely due to beam smearing of the bulk galactic rotation, and is generally supervirial. Comparing the internal turbulent pressure (Pturb) to the pressure required for dynamic equilibrium (PDE), the ratio Pturb/PDE is significantly less than unity in all galaxies, indicating that the gas is not in dynamic equilibrium and is strongly compressed, in apparent contradiction to the virial parameters. This may be due to our neglect of shear and tidal forces, and/or the combination of three-dimensional and vertical diagnostics. Both αvir and Pturb anticorrelate with the global star-formation rate of our galaxies. We therefore conclude that the molecular gas in early-type galaxies is likely unbound, and that large-scale dynamics likely plays a critical role in its regulation. This contrasts to the giant molecular clouds in the discs of late-type galaxies, that are much closer to dynamical equilibrium.

More details from the publisher
Details from ORA
More details

WISDOM Project -- XVII. Beam-by-beam Properties of the Molecular Gas in Early-type Galaxies

(2023)

Authors:

Thomas G Williams, Martin Bureau, Timothy A Davis, Michele Cappellari, Woorak Choi, Jacob S Elford, Satoru Iguchi, Jindra Gensior, Fu-Heng Liang, Anan Lu, Ilaria Ruffa, Hengyue Zhang
More details from the publisher

Velocity Dispersion σ aper Aperture Corrections as a Function of Galaxy Properties from Integral-field Stellar Kinematics of 10,000 MaNGA Galaxies

Chinese Astronomy and Astrophysics IOP Publishing 23:8 (2023) 085001

Authors:

Kai Zhu, Ran Li, Xiaoyue Cao, Shengdong Lu, Michele Cappellari, Shude Mao
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Current page 9
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet