Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Michele Cappellari

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • Extremely Large Telescope
michele.cappellari@physics.ox.ac.uk
Telephone: 01865 (2)73647
Denys Wilkinson Building, room 755
  • About
  • Publications

Testing mass determinations of supermassive black holes via stellar kinematics

AIP Conference Proceedings 1240 (2010) 211-214

Authors:

M Cappellari, RM McDermid, R Bacon, RL Davies, PT De Zeeuw, E Emsellem, J Falcón-Barroso, D Krajnović, H Kuntschner, RF Peletier, M Sarzi, RCE Van Den Bosch, G Van De Ven

Abstract:

We investigate the accuracy of mass determinations MBH of supermassive black holes in galaxies using dynamical models of the stellar kinematics. We compare 10 of our MBH measurements, using integral-field OASIS kinematics, to published values. For a sample of 25 galaxies we confront our new MBH derived using two modeling methods on the same OASIS data. © 2010 American Institute of Physics.
More details from the publisher
More details
Details from ArXiV

The Einstein Cross: Constraint on dark matter from stellar dynamics and gravitational lensing

Astrophysical Journal 719:2 (2010) 1481-1496

Authors:

G Van De Ven, J Falcón-Barroso, RM McDermid, M Cappellari, BW Miller, PT De Zeeuw

Abstract:

We present two-dimensional line-of-sight stellar kinematics of the lens galaxy in the Einstein Cross, obtained with the GEMINI 8 m telescope, using the GMOS integral-field spectrograph. The stellar kinematics extend to a radius of 4″ (with 0.″2 spaxels), covering about two-thirds of the effective (or half-light) radius Re - 6″ of this early-type spiral galaxy at redshift zl ≃ 0.04, of which the bulge is lensing a background quasar at redshift zs ≃ 1.7. The velocity map shows regular rotation up to ∼100 km s-1 around the minor axis of the bulge, consistent with axisymmetry. The velocity dispersion map shows a weak gradient increasing toward a central (R < 1″) value of σ0 = 170 ± 9 km s-1. We deproject the observed surface brightness from Hubble Space Telescope imaging to obtain a realistic luminosity density of the lens galaxy, which in turn is used to build axisymmetric dynamical models that fit the observed kinematic maps. We also construct a gravitational lens model that accurately fits the positions and relative fluxes of the four quasar images. We combine these independent constraints from stellar dynamics and gravitational lensing to study the total mass distribution in the inner parts of the lens galaxy. We find that the resulting luminous and total mass distribution are nearly identical around the Einstein radius Re = 0″.89, with a slope that is close to isothermal, but which becomes shallower toward the center if indeed mass follows light. The dynamical model fits to the observed kinematic maps result in a total mass-to-light ratio γdyn = 3.7 ± 0.5 γ⊙,I (in the I band). This is consistent with the Einstein mass Me = 1.54 × 1010 M⊙ divided by the (projected) luminosity within Re, which yields a total mass-to-light ratio of γE = 3.4 γ⊙,I, with an error of at most a few percent. We estimate from stellar population model fits to colors of the lens galaxy a stellar mass-to-light ratio γ* from 2.8 to 4.1 γ⊙,I. Although a constant dark matter fraction of 20% is not excluded, dark matter may play no significant role in the bulge of this ∼L* early-type spiral galaxy. © 2010. The American Astronomical Society.
More details from the publisher
More details
Details from ArXiV

The Tully-Fisher relations of early-type spiral and S0 galaxies

(2010)

Authors:

Michael J Williams, Martin Bureau, Michele Cappellari
More details from the publisher

Early-type galaxies in different environments: an HI view

(2010)

Authors:

Tom Oosterloo, Raffaella Morganti, Alison Crocker, Eva Juette, Michele Cappellari, Tim de Zeeuw, Davor Krajnovic, Richard McDermid, Harald Kuntschner, Marc Sarzi, Anne-Marie Weijmans
More details from the publisher

Measuring the low mass end of the Mbh - sigma relation

AIP Conference Proceedings AIP Publishing 1240 (2010) 215

Authors:

D Krajnovic, Rm McDermid, Michele Cappellari, Roger Davies

Abstract:

We show that high quality laser guide star (LGS) adaptive optics (AO) observations of nearby early-type galaxies are possible when the tip-tilt correction is done by guiding on nuclei while the focus compensation due to the changing distance to the sodium layer is made 'open loop'. We achieve corrections such that 40% of flux comes from R<0.2 arcsec. To measure a black hole mass (Mbh) one needs integral field observations of both high spatial resolution and large field of view. With these data it is possible to determine the lower limit to Mbh even if the spatial resolution of the observations are up to a few times larger than the sphere of influence of the black hole.
More details from the publisher
Details from ORA
Details from ArXiV
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 82
  • Page 83
  • Page 84
  • Page 85
  • Current page 86
  • Page 87
  • Page 88
  • Page 89
  • Page 90
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet