Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Michele Cappellari

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • Extremely Large Telescope
michele.cappellari@physics.ox.ac.uk
Telephone: 01865 (2)73647
Denys Wilkinson Building, room 755
  • About
  • Publications

The SAURON project - XII. Kinematic substructures in early-type galaxies: Evidence for discs in fast rotators

Monthly Notices of the Royal Astronomical Society 390:1 (2008) 93-117

Authors:

D Krajnović, R Bacon, M Cappellari, RL Davies, PT De Zeeuw, E Emsellem, J Falcón-Barroso, H Kuntschner, RM McDermid, RF Peletier, M Sarzi, RCE Van Den Bosch, G Van De Ven

Abstract:

We analysed two-dimensional maps of 48 early-type galaxies obtained with the SAURON and OASIS integral-field spectrographs using kinemetry, a generalization of surface photometry to the higher order moments of the line-of-sight velocity distribution (LOSVD). The maps analysed include: reconstructed image, mean velocity, velocity dispersion, h3 and h4 Gauss-Hermite moments. Kinemetry is a good method to recognize structures otherwise missed by using surface photometry, such as embedded discs and kinematic subcomponents. In the SAURON sample, we find that 31 per cent of early-type galaxies are single component systems. 91 per cent of the multicomponents systems have two kinematic subcomponents, the rest having three. In addition, 29 per cent of galaxies have kinematically decoupled components, nuclear components with significant kinematic twists. We differentiate between slow and fast rotators using velocity maps only and find that fast-rotating galaxies contain discs with a large range in mass fractions to the main body. Specifically, we find that the velocity maps of fast rotators closely resemble those of inclined discs, except in the transition regions between kinematic subcomponents. This deviation is measured with the kinemetric k 5/k1 ratio, which is large and noisy in slow rotators and about 2 per cent in fast rotators. In terms of E/S0 classification, this means that 74 per cent of Es and 92 per cent of S0s have components with disc-like kinematics. We suggest that differences in k5/k1 values for the fast and slow rotators arise from their different intrinsic structure which is reflected on the velocity maps. For the majority of fast rotators, the kinematic axial ratios are equal to or less than their photometric axial ratios, contrary to what is predicted with isotropic Jeans models viewed at different inclinations. The position angles of fast rotators are constant, while they vary abruptly in slow rotators. Velocity dispersion maps of face-on galaxies have shapes similar to the distribution of light. Velocity dispersion maps of the edge-on fast rotators and all slow rotators show differences which can only be partially explained with isotropic models and, in the case of fast rotators, often require additional cold components. We constructed local (bin-by-bin) h3-V/σ and h4-V/σ diagrams from SAURON observations. We confirm the classical anticorrelation of h3 and V/σ, but we also find that h3 is almost zero in some objects or even weakly correlated with V/σ. The distribution of h4 for fast and slow rotators is mildly positive on average. In general, fast rotators contain flattened components characterized by a disc-like rotation. The difference between slow and fast rotators is traceable throughout all moments of the LOSVD, with evidence for different intrinsic shapes and orbital contents and, hence, likely different evolutionary paths. © 2008 RAS.
More details from the publisher
More details

Triaxial orbit based galaxy models with an application to the (apparent) decoupled core galaxy NGC 4365

Monthly Notices of the Royal Astronomical Society 385:2 (2008) 647-666

Authors:

RCE Van Den Bosch, G Van De Ven, EK Verolme, M Cappellari, PT De Zeeuw

Abstract:

We present a flexible and efficient method to construct triaxial dynamical models of galaxies with a central black hole, using Schwarzschild's orbital superposition approach. Our method is general and can deal with realistic luminosity distributions, which project to surface brightness distributions that may show position angle twists and ellipticity variations. The models are fit to measurements of the full line-of-sight velocity distribution (wherever available). We verify that our method is able to reproduce theoretical predictions of a three-integral triaxial Abel model. In a companion paper by Ven, de Zeeuw & van den Bosch, we demonstrate that the method recovers the phase-space distribution function. We apply our method to two-dimensional observations of the E3 galaxy NGC 4365, obtained with the integral-field spectrograph SAURON, and study its internal structure, showing that the observed kinematically decoupled core is not physically distinct from the main body and the inner region is close to oblate axisymmetric. © 2008 RAS.
More details from the publisher
More details
Details from ArXiV

Galactic Bulges and Inner Disks, as Seen by SAURON

FORMATION AND EVOLUTION OF GALAXY DISKS 396 (2008) 81-+

Authors:

RF Peletier, K Ganda, J Falcon-Barroso, R Bacon, M Cappellari, RL Davies, PT de Zeeuw, E Emsellem, D Krajnovic, H Kuntschner, RM McDermid, M Sarzi, G van de Ven
More details

Recent star formation in nearby early-type galaxies

ASTR SOC P 390 (2008) 218-226

Authors:

M Sarzi, R Bacon, M Cappellari, RL Davies, PT de Zeeuw, E Emsellem, J Falcon-Barroso, D Krajnovic, H Kuntschner, RM McDermid, RF Peletier, G van de Ven

Abstract:

Motivated by recent progress in the study of early-type galaxies owing to technological advances, the launch of new space telescopes, and large ground-based surveys, we attempt a short review of our current understanding of the recent star formation activity in such intriguing galactic systems.
More details

Star formation in nearby early-type galaxies: Mapping in UV, optical, and CO

ASTROPHYSICS SPACE (2008) 312-312

Authors:

M Bureau, R Bacon, M Cappellari, F Combes, RL Davies, PT de Zeeuw, E Emsellem, J Falcon-Barroso, H Jeong, D Krajnovic, H Kuntschner, RM McDermid, RF Peletier, M Sarzi, KL Shapiro, GV de Ven, SK Yi, LM Young
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 95
  • Page 96
  • Page 97
  • Page 98
  • Current page 99
  • Page 100
  • Page 101
  • Page 102
  • Page 103
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet