Deep learning with photosensor timing information as a background rejection method for the Cherenkov Telescope Array
Astroparticle Physics Elsevier 129 (2021) 102579
Abstract:
New deep learning techniques present promising new analysis methods for Imaging Atmospheric Cherenkov Telescopes (IACTs) such as the upcoming Cherenkov Telescope Array (CTA). In particular, the use of Convolutional Neural Networks (CNNs) could provide a direct event classification method that uses the entire information contained within the Cherenkov shower image, bypassing the need to Hillas parameterise the image and allowing fast processing of the data. Existing work in this field has utilised images of the integrated charge from IACT camera photomultipliers, however the majority of current and upcoming generation IACT cameras have the capacity to read out the entire photosensor waveform following a trigger. As the arrival times of Cherenkov photons from Extensive Air Showers (EAS) at the camera plane are dependent upon the altitude of their emission and the impact distance from the telescope, these waveforms contain information potentially useful for IACT event classification. In this test-of-concept simulation study, we investigate the potential for using these camera pixel waveforms with new deep learning techniques as a background rejection method, against both proton and electron induced EAS. We find that a means of utilising their information is to create a set of seven additional 2-dimensional pixel maps of waveform parameters, to be fed into the machine learning algorithm along with the integrated charge image. Whilst we ultimately find that the only classification power against electrons is based upon event direction, methods based upon timing information appear to out-perform similar charge based methods for gamma/hadron separation. We also review existing methods of event classifications using a combination of deep learning and timing information in other astroparticle physics experiments.Deep learning with photosensor timing information as a background rejection method for the Cherenkov Telescope Array
(2021)
Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre
Journal of Cosmology and Astroparticle Physics IOP Publishing 2021:1 (2021) 057-057
Abstract:
© 2021 The Author(s). Published by IOP Publishing Ltd on behalf of Sissa Medialab. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. We provide an updated assessment of the power of the Cherenkov Telescope Array (CTA) to search for thermally produced dark matter at the TeV scale, via the associated gamma-ray signal from pair-annihilating dark matter particles in the region around the Galactic centre. We find that CTA will open a new window of discovery potential, significantly extending the range of robustly testable models given a standard cuspy profile of the dark matter density distribution. Importantly, even for a cored profile, the projected sensitivity of CTA will be sufficient to probe various well-motivated models of thermally produced dark matter at the TeV scale. This is due to CTA's unprecedented sensitivity, angular and energy resolutions, and the planned observational strategy. The survey of the inner Galaxy will cover a much larger region than corresponding previous observational campaigns with imaging atmospheric Cherenkov telescopes. CTA will map with unprecedented precision the large-scale diffuse emission in high-energy gamma rays, constituting a background for dark matter searches for which we adopt state-of-the-art models based on current data. Throughout our analysis, we use up-to-date event reconstruction Monte Carlo tools developed by the CTA consortium, and pay special attention to quantifying the level of instrumental systematic uncertainties, as well as background template systematic errors, required to probe thermally produced dark matter at these energies.Relevance of jet magnetic field structure for blazar axionlike particle searches
Physical Review D American Physical Society 103:2 (2021) 23008