Acceleration and transport of relativistic electrons in the jets of the microquasar SS 433
Science American Association for the Advancement of Science 383:6681 (2024) 402-406
Abstract:
SS 433 is a microquasar, a stellar binary system that launches collimated relativistic jets. We observed SS 433 in gamma rays using the High Energy Stereoscopic System (H.E.S.S.) and found an energy-dependent shift in the apparent position of the gamma-ray emission from the parsec-scale jets. These observations trace the energetic electron population and indicate that inverse Compton scattering is the emission mechanism of the gamma rays. Our modeling of the energy-dependent gamma-ray morphology constrains the location of particle acceleration and requires an abrupt deceleration of the jet flow. We infer the presence of shocks on either side of the binary system, at distances of 25 to 30 parsecs, and that self-collimation of the precessing jets forms the shocks, which then efficiently accelerate electrons.Optical spectroscopy of blazars for the Cherenkov Telescope Array -- III
(2024)
Investigating the Lorentz Invariance Violation effect using different cosmological backgrounds
Classical and Quantum Gravity IOP Publishing 41:1 (2023) 015022
Abstract:
Familiar concepts in physics, such as Lorentz symmetry, are expected to be broken at energies approaching the Planck energy scale as predicted by several quantum-gravity theories. However, such very large energies are unreachable by current experiments on Earth. Current and future Cherenkov telescope facilities may have the capability to measure the accumulated deformation from Lorentz symmetry for photons traveling over large distances via energy-dependent time delays. One of the best natural laboratories to test Lorentz Invariance Violation~(LIV) signatures are Gamma-ray bursts~(GRBs). The calculation of time delays due to the LIV effect depends on the cosmic expansion history. In almost all previous works calculating time lags due to the LIV effect, the standard $\Lambda$CDM (or concordance) cosmological model is assumed. In this paper, we investigate whether the LIV signature is significantly different when assuming alternatives to the $\Lambda$CDM cosmological model. Specifically, we consider cosmological models with a non-trivial dark-energy equation of state ($w \neq -1$), such as the standard Chevallier-Polarski-Linder~(CPL) parameterization, the quadratic parameterization of the dark-energy equation of state, and the Pade parameterizations. We find that the relative difference in the predicted time lags is small, of the order of at most a few percent, and thus likely smaller than the systematic differences of possible measurements currently or in the near future.Investigating the Lorentz Invariance Violation effect using different cosmological backgrounds
(2023)
Multiwavelength Observations of the Blazar PKS 0735+178 in Spatial and Temporal Coincidence with an Astrophysical Neutrino Candidate IceCube-211208A
The Astrophysical Journal American Astronomical Society 954:1 (2023) 70