Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Fraser Cowie

Graduate Student

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
fraser.cowie@physics.ox.ac.uk
  • About
  • Publications

Gone with the Wind: JWST-MIRI Unveils a Strong Outflow from the Quiescent Stellar-mass Black Hole A0620-00

The Astrophysical Journal American Astronomical Society 991:2 (2025) 157

Authors:

Zihao Zuo, Gabriele Cugno, Joseph Michail, Elena Gallo, David M Russell, Richard M Plotkin, Fan Zou, M Cristina Baglio, Piergiorgio Casella, Fraser J Cowie, Rob Fender, Poshak Gandhi, Sera Markoff, Federico Vincentelli, Fraser Lewis, Jon M Miller, James CA Miller-Jones, Alexandra Veledina

Abstract:

We present new observations of the black hole X-ray binary A0620-00 using the Mid-Infrared (MIR) Instrument on the James Webb Space Telescope, during a state where the X-ray luminosity is 9 orders of magnitude below Eddington, and coordinated with radio, near-infrared, and optical observations. The goal is to understand the nature of the excess MIR emission originally detected by Spitzer redward of 8 μm. The stellar-subtracted MIR spectrum is well modeled by a power law with a spectral index of α = 0.72 ± 0.01, where the flux density scales with frequency as Fν ∝ να. The spectral characteristics, along with rapid variability—a 40% flux flare at 15 μm and 25% achromatic variability in the 5–12 μm range—rule out a circumbinary disk as the source of the MIR excess. The Low Resolution Spectrometer reveals a prominent emission feature at 7.5 μm, resulting from the blend of three hydrogen recombination lines. While the contribution from partially self-absorbed synchrotron radiation cannot be ruled out, we argue that thermal bremsstrahlung from a warm (a few tens of thousands of Kelvin) wind accounts for the MIR excess; the same outflow is responsible for the emission lines. The inferred mass outflow rate indicates that the system’s low luminosity is due to a substantial fraction of the mass supplied by the donor star being expelled through a wind rather than accreted onto the black hole.
More details from the publisher
Details from ORA

Relativistic precessing jets powered by an accreting neutron star

Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press 544:1 (2025) L37-L44

Authors:

FJ Cowie, RP Fender, I Heywood, AK Hughes, K Savard, PA Woudt, F Carotenuto, AJ Cooper, J van den Eijnden, KVS Gasealahwe, SE Motta, P Saikia

Abstract:

Precessing relativistic jets launched by compact objects are rarely directly measured, and present an invaluable opportunity to better understand many features of astrophysical jets. In this Letter we present MeerKAT radio observations of the neutron star X-ray binary system (NSXB) Circinus X-1 (Cir X-1). We observe a curved S-shaped morphology on scales in the radio emission around Cir X-1. We identify flux density and position changes in the S-shaped emission on year time-scales, robustly showing its association with relativistic jets. The jets of Cir X-1 are still propagating with mildly relativistic velocities from the core, the first time such large scale jets have been seen from a NSXB. The position angle of the jet axis is observed to vary on year time-scales, over an extreme range of at least . The morphology and position angle changes of the jet are best explained by a smoothly changing launch direction, verifying suggestions from previous literature, and indicating that precession of the jets is occurring. Steady precession of the jet is one interpretation of the data, and if occurring, we constrain the precession period and half-opening angle to yr and , respectively, indicating precession in a different parameter space to similar known objects such as SS 433.
More details from the publisher
Details from ORA

The peculiar hard state behaviour of the black hole X-ray binary Swift J1727.8−1613

Monthly Notices of the Royal Astronomical Society Oxford University Press 542:3 (2025) 1803-1816

Authors:

AK Hughes, F Carotenuto, TD Russell, AJ Tetarenko, JCA Miller-Jones, RM Plotkin, A Bahramian, JS Bright, FJ Cowie, J Crook-Mansour, R Fender, JK Khaulsay, A Kirby, S Jones, M McCollough, R Rao, GR Sivakoff, SD Vrtilek, DRA Williams-Baldwin, CM Wood, D Altamirano, P Casella, N Castro Segura, S Corbel, S Motta

Abstract:

Tracking the correlation between radio and X-ray luminosities during black hole X-ray binary outbursts is a key diagnostic of the coupling between accretion inflows (traced by X-rays) and relativistic jet outflows (traced by radio). We present the radio–X-ray correlation of the black hole low-mass X-ray binary Swift J1727.8–1613 during its 2023–2024 outburst. Our observations span a broad dynamic range, covering 4 orders of magnitude in radio luminosity and 6.5 in X-ray luminosity. This source follows an unusually radio-quiet track, exhibiting significantly lower radio luminosities at a given X-ray luminosity than both the standard (radio-loud) track and most previously known radio-quiet systems. Across most of the considered distance range (–4.3 kpc), Swift J1727.8–1613 appears to be the most radio-quiet black hole binary identified to date. For distances kpc, while Swift J1727 becomes comparable to one other extremely radio-quiet system, its peak X-ray luminosity ( erg s) exceeds that of any previously reported hard-state black hole low-mass X-ray binary, emphasizing the extremity of this outburst. Additionally, for the first time in a radio-quiet system, we identify the onset of X-ray spectral softening to coincide with a change in trajectory through the radio–X-ray plane. We assess several proposed explanations for radio-quiet behaviour in black hole systems in light of this data set. As with other such sources, however, no single mechanism fully accounts for the observed properties, highlighting the importance of regular monitoring and the value of comprehensive (quasi-)simultaneous data-sets.
More details from the publisher
Details from ORA
More details

A relativistic jet from a neutron star breaking out of its natal supernova remnant

Monthly Notices of the Royal Astronomical Society Oxford University Press 541:4 (2025) 4011-4024

Authors:

KVS Gasealahwe, K Savard, IM Monageng, I Heywood, RP Fender, PA Woudt, J English, JH Matthews, H Whitehead, FJ Cowie, AK Hughes, P Saikia, SE Motta

Abstract:

The young neutron star X-ray binary, Cir X-1, resides within its natal supernova remnant and experiences ongoing outbursts every 16.5 d, likely due to periastron passage in an eccentric orbit. We present the deepest ever radio image of the field, which reveals relativistic jet-punched bubbles that are aligned with the mean axis of the smaller scale jets observed close to the X-ray binary core. We are able to measure the minimum energy for the bubble, which is around = erg. The nature and morphological structure of the source were investigated through spectral index mapping and numerical simulations. The spectral index map reveals a large fraction of the nebula’s radio continuum has a steep slope, associated with optically thin synchrotron emission, although there are distinct regions with flatter spectra. Our data are not sensitive enough to measure the spectral index of the protruding bubbles. We used the pluto code to run relativistic hydrodynamic simulations to try and qualitatively reproduce the observations with a combined supernova-plus-jet system. We are able to do so using a simplified model in which the asymmetrical bubbles are best represented by supernova explosion which is closely followed (within 100 yr) by a phase of very powerful jets lasting less than 1000 yr. These are the first observations revealing the initial breakout of neutron star jets from their natal supernova remnant, and further support the scenario in which Cir X-1 is a younger relation of the archetypal jet source SS433.
More details from the publisher
Details from ORA
More details

Comprehensive Radio Monitoring of the Black Hole X-Ray Binary Swift J1727.8−1613 during Its 2023–2024 Outburst

The Astrophysical Journal American Astronomical Society 988:1 (2025) 109

Authors:

Andrew K Hughes, Francesco Carotenuto, Thomas D Russell, Alexandra J Tetarenko, James CA Miller-Jones, Arash Bahramian, Joe S Bright, Fraser J Cowie, Rob Fender, Mark A Gurwell, Jasvinderjit K Khaulsay, Anastasia Kirby, Serena Jones, Elodie Lescure, Michael McCollough, Richard M Plotkin, Ramprasad Rao, Saeqa D Vrtilek, David RA Williams-Baldwin, Callan M Wood, Gregory R Sivakoff, Diego Altamirano, Piergiorgio Casella, Stéphane Corbel, James H Matthews, Andrew Siemion

Abstract:

This work presents comprehensive multifrequency radio monitoring of the black hole low-mass X-ray binary (LMXB) Swift J1727.8−1613, which underwent its first recorded outburst after its discovery in 2023 August. Through a considerable community effort, we have coalesced the data from multiple, distinct observing programs; the light curves include ∼10 months and 197 epochs of monitoring from seven radio facilities with observing frequencies ranging from (approximately) 0.3–230 GHz. The primary purpose of this work is to provide the broader astronomical community with these light curves to assist with the interpretation of other observing campaigns, particularly nonradio observing frequencies. We discuss the phenomenological evolution of the source, which included (i) multiple radio flares consistent with the launching of discrete jet ejections, the brightest of which reached ∼1 Jy; (ii) temporally evolving radio spectral indices (α), reaching values steeper than expected for optically thin synchrotron emission (α < −1) and emission with significant radiative cooling (α < −1.5). We have published a digital copy of the data and intend for this work to set a precedent for the community to continue releasing comprehensive radio light curves of future LMXB outbursts.
More details from the publisher
Details from ORA
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet