Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
CMP
Credit: Jack Hobhouse

Suchintak Dash

PDRA in Single-Cell Microbiology of bacterial Gene Expression

Sub department

  • Condensed Matter Physics
suchintak.dash@physics.ox.ac.uk
Biochemistry Building
  • About
  • Publications

Dynamics of bacterial operons during genome-wide stresses is influenced by premature terminations and internal promoters.

Science advances 11:20 (2025) eadl3570

Authors:

Rahul Jagadeesan, Suchintak Dash, Cristina SD Palma, Ines SC Baptista, Vatsala Chauhan, Jarno Mäkelä, Andre S Ribeiro

Abstract:

Bacterial gene networks have operons, each coordinating several genes under a primary promoter. Half of the operons in Escherichia coli have been reported to also contain internal promoters. We studied their role during genome-wide stresses targeting key transcription regulators, RNA polymerase (RNAP) and gyrase. Our results suggest that operons' responses are influenced by stress-related changes in premature elongation terminations and internal promoters' activity. Globally, this causes the responses of genes in the same operon to differ with the distance between them in a wave-like pattern. Meanwhile, premature terminations are affected by positive supercoiling buildup, collisions between elongating and promoter-bound RNAPs, and local regulatory elements. We report similar findings in E. coli under other stresses and in evolutionarily distant bacteria Bacillus subtilis, Corynebacterium glutamicum, and Helicobacter pylori. Our results suggest that the strength, number, and positioning of operons' internal promoters might have evolved to compensate for premature terminations, providing distal genes similar response strengths.
More details from the publisher

Bimodality in E. coli gene expression: Sources and robustness to genome-wide stresses.

PLoS computational biology 21:2 (2025) e1012817

Authors:

Ines SC Baptista, Suchintak Dash, Amir M Arsh, Vinodh Kandavalli, Carlo Maria Scandolo, Barry C Sanders, Andre S Ribeiro

Abstract:

Bacteria evolved genes whose single-cell distributions of expression levels are broad, or even bimodal. Evidence suggests that they might enhance phenotypic diversity for coping with fluctuating environments. We identified seven genes in E. coli with bimodal (low and high) single-cell expression levels under standard growth conditions and studied how their dynamics are modified by environmental and antibiotic stresses known to target gene expression. We found that all genes lose bimodality under some, but not under all, stresses. Also, bimodality can reemerge upon cells returning to standard conditions, which suggests that the genes can switch often between high and low expression rates. As such, these genes could become valuable components of future multi-stable synthetic circuits. Next, we proposed models of bimodal transcription dynamics with realistic parameter values, able to mimic the outcome of the perturbations studied. We explored several models' tunability and boundaries of parameter values, beyond which it shifts to unimodal dynamics. From the model results, we predict that bimodality is robust, and yet tunable, not only by RNA and protein degradation rates, but also by the fraction of time that promoters remain unavailable for new transcription events. Finally, we show evidence that, although the empirical expression levels are influenced by many factors, the bimodality emerges during transcription initiation, at the promoter regions and, thus, may be evolvable and adaptable.
More details from the publisher

A library of reporters of the global regulators of gene expression in Escherichia coli.

mSystems 9:6 (2024) e0006524

Authors:

Suchintak Dash, Rahul Jagadeesan, Ines SC Baptista, Vatsala Chauhan, Vinodh Kandavalli, Samuel MD Oliveira, Andre S Ribeiro

Abstract:

The topology of the transcription factor network (TFN) of Escherichia coli is far from uniform, with 22 global regulator (GR) proteins controlling one-third of all genes. So far, their production rates cannot be tracked by comparable fluorescent proteins. We developed a library of fluorescent reporters for 16 GRs for this purpose. Each consists of a single-copy plasmid coding for green fluorescent protein (GFP) fused to the full-length copy of the native promoter. We tracked their activity in exponential and stationary growth, as well as under weak and strong stresses. We show that the reporters have high sensitivity and specificity to all stresses tested and detect single-cell variability in transcription rates. Given the influence of GRs on the TFN, we expect that the new library will contribute to dissecting global transcriptional stress-response programs of E. coli. Moreover, the library can be invaluable in bioindustrial applications that tune those programs to, instead of cell growth, favor productivity while reducing energy consumption.IMPORTANCECells contain thousands of genes. Many genes are involved in the control of cellular activities. Some activities require a few hundred genes to run largely synchronous transcriptional programs. To achieve this, cells have evolved global regulator (GR) proteins that can influence hundreds of genes simultaneously. We have engineered a library of Escherichia coli strains to track the levels over time of these, phenotypically critical, GRs. Each strain has a single-copy plasmid coding for a fast-maturing green fluorescent protein whose transcription is controlled by a copy of the natural GR promoter. By allowing the tracking of GR levels, with sensitivity and specificity, this library should become of wide use in scientific research on bacterial gene expression (from molecular to synthetic biology) and, later, be used in applications in therapeutics and bioindustries.
More details from the publisher

A library of reporters of the global regulators of gene expression ofEscherichia coli

(2023)

Authors:

Suchintak Dash, Rahul Jagadeesan, Ines SC Baptista, Vatsala Chauhan, Vinodh Kandavalli, Samuel MD Oliveira, Andre Ribeiro
More details from the publisher

Dynamics of bacterial operons during genome-wide stresses is influenced by premature terminations and internal promoters

(2023)

Authors:

Rahul Jagadeesan, Suchintak Dash, Cristina Palma, Ines Baptista, Vatsala Chauhan, Jarno Makela, Andre Ribeiro
More details from the publisher

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet