TOI-6478 b: a cold underdense Neptune transiting a fully convective M dwarf from the thick disc
Monthly Notices of the Royal Astronomical Society Oxford University Press 540:2 (2025) 1909-1927
Abstract:
Growing numbers of exoplanet detections continue to reveal the diverse nature of planetary systems. Planet formation around late-type M dwarfs is of particular interest. These systems provide practical laboratories to measure exoplanet occurrence rates for M dwarfs, thus testing how the outcomes of planet formation scale with host mass, and how they compare to Sun-like stars. Here, we report the discovery of TOI-6478 b, a cold ( K) Neptune-like planet orbiting an M5 star (, , K) that is a member of the Milky Way’s thick disc. We measure a planet radius of on a d orbit. Using radial velocities, we calculate an upper mass limit of (, with confidence. TOI-6478 b is a milestone planet in the study of cold Neptune-like worlds. Due to its large atmospheric scale height, it is amenable to atmospheric characterization with facilities such as JWST, and will provide an excellent probe of atmospheric chemistry in this cold regime. It is one of very few transiting exoplanets that orbit beyond their system’s ice-line whose atmospheric chemical composition can be measured. Based on our current understanding of this planet, we estimate TOI-6478 b’s spectroscopic features (in transmission) can be as high as the widely studied planet K2-18 b.TOI-2015 b: A sub-Neptune in strong gravitational interaction with an outer non-transiting planet
Astronomy and Astrophysics 695 (2025)
Abstract:
TOI-2015 is a known exoplanetary system around an M4 dwarf star, consisting of a transiting sub-Neptune planet in a 3.35-day orbital period, TOI-2015 b, accompanied by a non-transiting companion, TOI-2015 c. High-precision radial-velocity measurements were taken with the MAROON-X spectrograph, and high-precision photometric data were collected, primarily using the SPECULOOS, MUSCAT, TRAPPIST and LCOGT networks. We collected 63 transit light curves and 49 different transit epochs for TOI-2015 b. We recharacterized the target star by combining optical spectra obtained by the MAROON-X, Shane/KAST and IRTF/SpeX spectrographs, Bayesian model averaging (BMA) and spectral energy distribution (SED) analysis. The TOI-2015 host star is a K = 10.3 mag M4-type dwarf with a subsolar metallicity of [Fe/H] =-0.31 ± 0.16, and an effective temperature of Teff ≈ 3200 K. Our photodynamical analysis of the system strongly favors the 5:3 mean-motion resonance and in this scenario the planet b (TOI-2015 b) has an orbital period of Pb = 3.34 days, a mass of Mp = 9.02-0.36+0.32M⊕, and a radius of Rp = 3.309-0.011+0.013R⊕, resulting in a density of ρp = 0.25 ± 0.01 ρ⊕ = 1.40 ± 0.06 g cm-3; this is indicative of a Neptune-like composition. Its transits exhibit large (> 1 hr) timing variations characteristic of an outer perturber in the system. We performed a global analysis of the high-resolution radial-velocity measurements, the photometric data, and the TTVs, and inferred that TOI-2015 hosts a second planet, TOI-2015 c, in a non-transiting configuration. Our analysis places it near a 5:3 resonance with an orbital period of Pc = 5.583 days and a mass of Mp = 8.91-0.40+0.38M⊕. The dynamical configuration of TOI-2015 b and TOI-2015 c can be used to constrain the system's planetary formation and migration history. Based on the mass-radius composition models, TOI-2015 b is a water-rich or rocky planet with a hydrogen-helium envelope. Moreover, TOI-2015 b has a high transmission-spectroscopic metric (TSM=149), making it a favorable target for future transmission spectroscopic observations with the JWST to constrain the atmospheric composition of the planet. Such observations would also help to break the degeneracies in theoretical models of the planet's interior structure.TOI-4336 A b: A temperate sub-Neptune ripe for atmospheric characterization in a nearby triple M-dwarf system
Astronomy and Astrophysics 687 (2024)
Abstract:
Context. Small planets transiting bright nearby stars are essential to our understanding of the formation and evolution of exoplanetary systems. However, few constitute prime targets for atmospheric characterization, and even fewer are part of multiple star systems. Aims. This work aims to validate TOI-4336 A b, a sub-Neptune-sized exoplanet candidate identified by the TESS space-based transit survey around a nearby M dwarf. Methods. We validated the planetary nature of TOI-4336 A b through the global analysis of TESS and follow-up multi-band high-precision photometric data from ground-based telescopes, medium- and high-resolution spectroscopy of the host star, high-resolution speckle imaging, and archival images. Results. The newly discovered exoplanet TOI-4336 A b has a radius of 2.1 ± 0.1 R±. Its host star is an M3.5-dwarf star with a mass of 0.33 ± 0.01 M· and a radius of 0.33 ± 0.02 R·, and is a member of a hierarchical triple M-dwarf system 22 pc away from the Sun. The planet's orbital period of 16.3 days places it at the inner edge of the habitable zone of its host star, which is the brightest of the inner binary pair. The parameters of the system make TOI-4336 A b an extremely promising target for the detailed atmospheric characterization of a temperate sub-Neptune by transit transmission spectroscopy with JWST.Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TESS and CHEOPS
Monthly Notices of the Royal Astronomical Society 531:1 (2024) 1276-1293
Abstract:
We report on the discovery of Gliese 12 b, the nearest transiting temperate, Earth-sized planet found to date. Gliese 12 is a bright (V = 12.6 mag, K = 7.8 mag) metal-poor M4V star only 12.162 ± 0.005 pc away from the Solar system with one of the lowest stellar activity levels known for M-dwarfs. A planet candidate was detected by TESS based on only 3 transits in sectors 42, 43, and 57, with an ambiguity in the orbital period due to observational gaps. We performed follow-up transit observations with CHEOPS and ground-based photometry with MINERVA-Australis, SPECULOOS, and Purple Mountain Observatory, as well as further TESS observations in sector 70. We statistically validate Gliese 12 b as a planet with an orbital period of 12.76144 ± 0.00006 d and a radius of 1.0 ± 0.1 RIdentification of the Top TESS Objects of Interest for Atmospheric Characterization of Transiting Exoplanets with JWST
The Astronomical Journal American Astronomical Society 167:5 (2024) 233