Measurement from sun-synchronous orbit of a reaction rate controlling the diurnal NOx cycle in the stratosphere
Atmospheric Chemistry and Physics 11:10 (2011) 4861-4872
Abstract:
A reaction rate associated with the nighttime formation of an important diurnally varying species, N2O5, is determined from MIPAS-ENVISAT. During the day, photolysis of N2O5 in the stratosphere contributes to nitrogen-catalysed ozone destruction. However, at night concentrations of N2O5 increase, temporarily sequestering reactive NOx NO and NO2 in a natural cycle which regulates the majority of stratospheric ozone. In this paper, the reaction rate controlling the formation of N2O5 is determined from this instrument for the first time. The observed reaction rate is compared to the currently accepted rate determined from laboratory measurements. Good agreement is obtained between the observed and accepted experimental reaction rates within the error bars. © 2011 Author(s).Retrieval of macrophysical cloud parameters from MIPAS: Algorithm description
Atmospheric Measurement Techniques 4:4 (2011) 683-704
Abstract:
The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard ENVISAT has the potential to be particularly useful for studying high, thin clouds, which have been difficult to observe in the past. This paper details the development, implementation and testing of an optimal-estimation- type retrieval for three macrophysical cloud parameters (cloud top height, cloud top temperature and cloud extinction coefficient) from infrared spectra measured by MIPAS. A preliminary estimation of a parameterisation of the optical and geometrical filling of the measurement field-of-view by cloud is employed as the first step of the retrieval process to improve the choice of a priori for the macrophysical parameters themselves. Preliminary application to single-scattering simulations indicates that the retrieval error stemming from uncertainties introduced by noise and by a priori variances in the retrieval process itself is small - although it should be noted that these retrieval errors do not include the significant errors stemming from the assumption of homogeneity and the non-scattering nature of the forward model. Such errors are preliminarily and qualitatively assessed here, and are likely to be the dominant error sources. The retrieval converges for 99% of input cases, although sometimes fails to converge for vetically-thin (<1 km) clouds. The retrieval algorithm is applied to MIPAS data; the results of which are qualitatively compared with CALIPSO cloud top heights and PARASOL cloud opacities. From comparison with CALIPSO cloud products, it must be noted that the cloud detection method used in this algorithm appears to potentially misdetect stratospheric aerosol layers as cloud. This algorithm has been adopted by the European Space Agency's "MIPclouds" project. © Author(s) 2011.ULIRS, an optimal estimation retrieval scheme for carbon monoxide using IASI spectral radiances: Sensitivity analysis, error budget and simulations
Atmospheric Measurement Techniques 4:2 (2011) 269-288
Abstract:
This paper presents a new retrieval scheme for tropospheric carbon monoxide (CO), using measured radiances from the Infrared Atmospheric Sounding Interferometer (IASI) onboard the MetOp-A satellite. The University of Leicester IASI Retrieval Scheme (ULIRS) is an optimal estimation retrieval scheme, which utilises equidistant pressure levels and a floating pressure grid based on topography. It makes use of explicit digital elevation and emissivity information, and incorporates a correction for solar surface reflection in the daytime with a high resolution solar spectrum. The retrieval scheme has been assessed through a formal error analysis, via the simulation of surface effects and by an application to real IASI data over a region in Southern Africa. The ULIRS enables the retrieval of between 1 and 2 pieces of information about the tropospheric CO vertical profiles, with peaks in the sensitivity at approximately 5 and 12 km. Typical errors for the African region relating to the profiles are found to be ∼20% at 5 and 12 km, and on the total columns to range from 18 to 34%. Finally the performance of the ULIRS is shown for a range of simulated geophysical conditions.An effective method for the detection of trace species demonstrated using the MetOp Infrared Atmospheric Sounding Interferometer
Atmospheric Measurement Techniques 4:8 (2011) 1567-1580
ULIRS, an optimal estimation retrieval scheme for carbon monoxide using IASI spectral radiances: Sensitivity analysis, error budget and simulations
Atmospheric Measurement Techniques 4:2 (2011) 269-288