Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Christopher Duncan

Visitor

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Euclid
christopher.duncan@physics.ox.ac.uk
Telephone: 01865(2)83016
Denys Wilkinson Building, room 555A
  • About
  • Publications

Cluster mass profile reconstruction with size and flux magnification on the HST STAGES survey.

Monthly notices of the Royal Astronomical Society 457:1 (2016) 764-785

Authors:

Christopher AJ Duncan, Catherine Heymans, Alan F Heavens, Benjamin Joachimi

Abstract:

We present the first measurement of individual cluster mass estimates using weak lensing size and flux magnification. Using data from the HST STAGES (Space Telescope A901/902 Galaxy Evolution Survey) survey of the A901/902 supercluster we detect the four known groups in the supercluster at high significance using magnification alone. We discuss the application of a fully Bayesian inference analysis, and investigate a broad range of potential systematics in the application of the method. We compare our results to a previous weak lensing shear analysis of the same field finding the recovered signal-to-noise of our magnification-only analysis to range from 45 to 110 per cent of the signal-to-noise in the shear-only analysis. On a case-by-case basis we find consistent magnification and shear constraints on cluster virial radius, and finding that for the full sample, magnification constraints to be a factor 0.77 ± 0.18 lower than the shear measurements.
More details from the publisher
More details

On the complementarity of galaxy clustering with cosmic shear and flux magnification

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 437:3 (2014) 2471-2487

Authors:

Christopher AJ Duncan, Benjamin Joachimi, Alan F Heavens, Catherine Heymans, Hendrik Hildebrandt
More details from the publisher

Cosmic magnification as a probe of cosmology

Proceedings of the 47th Rencontres de Moriond on Cosmology 2012 (2012) 173-176

Authors:

C Duncan, A Heavens, B Joachimi, C Heymans

Abstract:

With the wealth of upcoming data from wide-field surveys such as KiDS, Pan-STARRS, DES and Euclid, it is more important than ever to understand the full range of independent probes of cosmology at our disposal. With this in mind, we motivate the use of cosmic magnification as a probe of cosmology, presenting forecasts for the improvements to cosmic shear cosmological parameter constraints when cosmic magnification is included for a KiDS-like survey. We find that when uncertainty in the galaxy bias is factored into the forecasts, cosmic magnification is less powerful that previously reported, but as it is less likely to be prone to measurement error we conclude it is a useful tool for cosmological analyses.

Euclid preparation: VI. Verifying the Performance of Cosmic Shear Experiments

Authors:

Euclid Collaboration, P Paykari, Td Kitching, H Hoekstra, R Azzollini, Vf Cardone, M Cropper, Caj Duncan, A Kannawadi, L Miller, H Aussel, If Conti, N Auricchio, M Baldi, S Bardelli, A Biviano, D Bonino, E Borsato, E Bozzo, E Branchini, S Brau-Nogue, M Brescia, J Brinchmann, C Burigana, S Camera, V Capobianco, C Carbone, J Carretero, Fj Castander, M Castellano, S Cavuoti, Y Charles, R Cledassou, C Colodro-Conde, G Congedo, C Conselice, L Conversi, Y Copin, J Coupon, Hm Courtois, A Da Silva, X Dupac, G Fabbian, S Farrens, Pg Ferreira, P Fosalba, N Fourmanoit, M Frailis, M Fumana, S Galeotta

Abstract:

Our aim is to quantify the impact of systematic effects on the inference of cosmological parameters from cosmic shear. We present an end-to-end approach that introduces sources of bias in a modelled weak lensing survey on a galaxy-by-galaxy level. Residual biases are propagated through a pipeline from galaxy properties (one end) through to cosmic shear power spectra and cosmological parameter estimates (the other end), to quantify how imperfect knowledge of the pipeline changes the maximum likelihood values of dark energy parameters. We quantify the impact of an imperfect correction for charge transfer inefficiency (CTI) and modelling uncertainties of the point spread function (PSF) for Euclid, and find that the biases introduced can be corrected to acceptable levels.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • Current page 12

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet