Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Christopher Duncan

Visitor

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Euclid
christopher.duncan@physics.ox.ac.uk
Telephone: 01865(2)83016
Denys Wilkinson Building, room 555A
  • About
  • Publications

Euclid preparation

Astronomy & Astrophysics EDP Sciences 693 (2025) a59

Authors:

H Böhringer, G Chon, O Cucciati, H Dannerbauer, M Bolzonella, G De Lucia, A Cappi, L Moscardini, C Giocoli, G Castignani, Na Hatch, S Andreon, E Bañados, S Ettori, F Fontanot, H Gully, M Hirschmann, M Maturi, S Mei, L Pozzetti, T Schlenker, M Spinelli, N Aghanim, B Altieri, N Auricchio, C Baccigalupi, M Baldi, S Bardelli, C Bodendorf, D Bonino, E Branchini, M Brescia, J Brinchmann, S Camera, V Capobianco, C Carbone, J Carretero, S Casas, Fj Castander, M Castellano, S Cavuoti, A Cimatti, C Colodro-Conde, G Congedo, Cj Conselice, L Conversi, Y Copin, F Courbin, Hm Courtois, A Da Silva

Abstract:

Galaxy proto-clusters are receiving increased interest since most of the processes shaping the structure of clusters of galaxies and their galaxy population happen at the early stages of their formation. The Euclid Survey will provide a unique opportunity to discover a large number of proto-clusters over a large fraction of the sky (14 500 deg2). In this paper, we explore the expected observational properties of proto-clusters in the Euclid Wide Survey by means of theoretical models and simulations. We provide an overview of the predicted proto-cluster extent, galaxy density profiles, mass-richness relations, abundance, and sky-filling as a function of redshift. Useful analytical approximations for the functions of these properties are provided. The focus is on the redshift range z = 1.5-4. In particular we discuss the density contrast with which proto-clusters can be observed against the background in the galaxy distribution if photometric galaxy redshifts are used as supplied by the ESA Euclid mission together with the ground-based photometric surveys. We show that the obtainable detection significance is sufficient to find large numbers of interesting proto-cluster candidates. For quantitative studies, additional spectroscopic follow-up is required to confirm the proto-clusters and establish their richness.
More details from the publisher
More details

Euclid preparation

Astronomy & Astrophysics EDP Sciences 693 (2025) a58

Authors:

M Archidiacono, J Lesgourgues, S Casas, S Pamuk, N Schöneberg, Z Sakr, G Parimbelli, A Schneider, F Hervas Peters, F Pace, Vm Sabarish, M Costanzi, S Camera, C Carbone, S Clesse, N Frusciante, A Fumagalli, P Monaco, D Scott, M Viel, A Amara, S Andreon, N Auricchio, M Baldi, S Bardelli, C Bodendorf, D Bonino, E Branchini, M Brescia, J Brinchmann, V Capobianco, Vf Cardone, J Carretero, M Castellano, S Cavuoti, A Cimatti, G Congedo, Cj Conselice, L Conversi, Y Copin, F Courbin, Hm Courtois, A Da Silva, H Degaudenzi, M Douspis, F Dubath, Caj Duncan, X Dupac, S Dusini, A Ealet

Abstract:

Context. The Euclid mission of the European Space Agency will deliver weak gravitational lensing and galaxy clustering surveys that can be used to constrain the standard cosmological model and extensions thereof. Aims. We present forecasts from the combination of the Euclid photometric galaxy surveys (weak lensing, galaxy clustering, and their cross-correlations) and its spectroscopic redshift survey with respect to their sensitivity to cosmological parameters. We include the summed neutrino mass, Σmν, and the effective number of relativistic species, Neff, in the standard Λ CDM scenario and in the dynamical dark energy (w0waCDM) scenario. Methods. We compared the accuracy of different algorithms predicting the non-linear matter power spectrum for such models. We then validated several pipelines for Fisher matrix and Markov chain Monte Carlo (MCMC) forecasts, using different theory codes, algorithms for numerical derivatives, and assumptions on the non-linear cut-off scale. Results. The Euclid primary probes alone will reach a sensitivity of σ (Σmν = 60 meV) = 56 meV in the Λ CDM+Σmν model, whereas the combination with cosmic microwave background (CMB) data from Planck is expected to achieve σ (Σmν) = 23 meV, offering evidence of a non-zero neutrino mass to at least the 2.6 σ level. This could be pushed to a 4 σ detection if future CMB data from LiteBIRD and CMB Stage-IV were included. In combination with Planck, Euclid will also deliver tight constraints on Δ Neff < 0.144 (95%CL) in the Λ CDM+Σmν+Neff model or even Δ Neff < 0.063 when future CMB data are included. When floating the dark energy parameters, we find that the sensitivity to Neff remains stable, but for Σmν, it gets degraded by up to a factor of 2, at most. Conclusions. This work illustrates the complementarity among the Euclid spectroscopic and photometric surveys and among Euclid and CMB constraints. Euclid will offer great potential in measuring the neutrino mass and excluding well-motivated scenarios with additional relativistic particles.
More details from the publisher
More details

Euclid preparation

Astronomy & Astrophysics EDP Sciences 691 (2024) a319

Authors:

G Congedo, L Miller, AN Taylor, N Cross, CAJ Duncan, T Kitching, N Martinet, S Matthew, T Schrabback, M Tewes, N Welikala, N Aghanim, A Amara, S Andreon, N Auricchio, M Baldi, S Bardelli, R Bender, C Bodendorf, D Bonino, E Branchini, M Brescia, J Brinchmann, S Camera, V Capobianco, C Carbone, VF Cardone, J Carretero, S Casas, FJ Castander, M Castellano, S Cavuoti, A Cimatti, CJ Conselice, L Conversi, Y Copin, F Courbin, HM Courtois, M Cropper, A Da Silva, H Degaudenzi, AM Di Giorgio, J Dinis, F Dubath, X Dupac, M Farina, S Farrens, S Ferriol, P Fosalba, M Frailis, E Franceschi, S Galeotta, B Garilli, B Gillis, C Giocoli, A Grazian, F Grupp, SVH Haugan, MS Holliman, W Holmes, F Hormuth, A Hornstrup, P Hudelot, K Jahnke, E Keihänen, S Kermiche, A Kiessling, M Kilbinger, B Kubik, K Kuijken, M Kümmel, M Kunz, H Kurki-Suonio, S Ligori, PB Lilje, V Lindholm, I Lloro, D Maino, E Maiorano, O Mansutti, O Marggraf, K Markovic, F Marulli, R Massey, S Maurogordato, HJ McCracken, E Medinaceli, S Mei, M Melchior, M Meneghetti, E Merlin, G Meylan, M Moresco, B Morin, L Moscardini, E Munari, S-M Niemi, JW Nightingale, C Padilla, S Paltani, F Pasian, K Pedersen, WJ Percival, V Pettorino, S Pires, G Polenta, M Poncet, LA Popa, L Pozzetti, F Raison, R Rebolo, A Renzi, J Rhodes, G Riccio, E Romelli, M Roncarelli, E Rossetti, R Saglia, D Sapone, B Sartoris, P Schneider, A Secroun, G Seidel, S Serrano, C Sirignano, G Sirri, L Stanco, P Tallada-Crespí, D Tavagnacco, I Tereno, R Toledo-Moreo, F Torradeflot, I Tutusaus, EA Valentijn, L Valenziano, T Vassallo, A Veropalumbo, Y Wang, J Weller, G Zamorani, J Zoubian, E Zucca, A Biviano, M Bolzonella, A Boucaud, E Bozzo, C Burigana, C Colodro-Conde, D Di Ferdinando, J Graciá-Carpio, N Mauri, C Neissner, AA Nucita, Z Sakr, V Scottez, M Tenti, M Viel, M Wiesmann, Y Akrami, V Allevato, S Anselmi, C Baccigalupi, M Ballardini, S Borgani, AS Borlaff, S Bruton, R Cabanac, A Cappi, CS Carvalho, G Castignani, T Castro, G Cañas-Herrera, KC Chambers, AR Cooray, J Coupon, S Davini, G De Lucia, G Desprez, S Di Domizio, H Dole, A Díaz-Sánchez, JA Escartin Vigo, S Escoffier, I Ferrero, F Finelli, L Gabarra, J García-Bellido, E Gaztanaga, F Giacomini, G Gozaliasl, D Guinet, A Hall, H Hildebrandt, S Ilić, A Jimenez Muñoz, S Joudaki, JJE Kajava, V Kansal, D Karagiannis, CC Kirkpatrick, L Legrand, J Macias-Perez, G Maggio, M Magliocchetti, R Maoli, M Martinelli, CJAP Martins, M Maturi, L Maurin, RB Metcalf, M Migliaccio, P Monaco, G Morgante, S Nadathur, L Patrizii, A Peel, A Pezzotta, V Popa, C Porciani, D Potter, M Pöntinen, P Reimberg, P-F Rocci, AG Sánchez, JA Schewtschenko, A Schneider, E Sefusatti, M Sereno, P Simon, A Spurio Mancini, J Stadel, J Steinwagner, G Testera, R Teyssier, S Toft, S Tosi, A Troja, M Tucci, C Valieri, J Valiviita, D Vergani
More details from the publisher
More details

Euclid preparation

Astronomy & Astrophysics EDP Sciences 690 (2024) a103

Authors:

S Serrano, P Hudelot, G Seidel, JE Pollack, E Jullo, F Torradeflot, D Benielli, R Fahed, T Auphan, J Carretero, H Aussel, P Casenove, FJ Castander, JE Davies, N Fourmanoit, S Huot, A Kara, E Keihänen, S Kermiche, K Okumura, J Zoubian, A Ealet, A Boucaud, H Bretonnière, R Casas, B Clément, CAJ Duncan, K George, K Kiiveri, H Kurki-Suonio, M Kümmel, D Laugier, G Mainetti, JJ Mohr, A Montoro, C Neissner, C Rosset, M Schirmer, P Tallada-Crespí, N Tonello, A Venhola, A Verderi, A Zacchei, N Aghanim, B Altieri, A Amara, S Andreon, N Auricchio, R Azzollini, C Baccigalupi, M Baldi, S Bardelli, A Basset, P Battaglia, F Bernardeau, C Bodendorf, D Bonino, E Branchini, M Brescia, J Brinchmann, S Camera, GP Candini, V Capobianco, C Carbone, S Casas, M Castellano, G Castignani, S Cavuoti, A Cimatti, R Cledassou, C Colodro-Conde, G Congedo, CJ Conselice, L Conversi, Y Copin, L Corcione, F Courbin, HM Courtois, M Crocce, M Cropper, A Da Silva, H Degaudenzi, G De Lucia, AM Di Giorgio, J Dinis, F Dubath, X Dupac, S Dusini, M Farina, S Farrens, S Ferriol, M Frailis, E Franceschi, P Franzetti, S Galeotta, B Garilli, W Gillard, B Gillis, C Giocoli, BR Granett, A Grazian, F Grupp, L Guzzo, SVH Haugan, J Hoar, H Hoekstra, W Holmes, I Hook, F Hormuth, A Hornstrup, K Jahnke, B Joachimi, A Kiessling, T Kitching, R Kohley, M Kunz, Q Le Boulc’h, P Liebing, S Ligori, PB Lilje, V Lindholm, I Lloro, D Maino, E Maiorano, O Mansutti, S Marcin, O Marggraf, K Markovic, M Martinelli, N Martinet, F Marulli, R Massey, S Maurogordato, E Medinaceli, S Mei, M Melchior, Y Mellier, M Meneghetti, E Merlin, G Meylan, M Moresco, P Morris, L Moscardini, E Munari, R Nakajima, S-M Niemi, T Nutma, C Padilla, S Paltani, F Pasian, K Pedersen, WJ Percival, V Pettorino, S Pires, G Polenta, M Poncet, LA Popa, L Pozzetti, F Raison, R Rebolo, A Renzi, J Rhodes, G Riccio, E Romelli, M Roncarelli, E Rossetti, B Rusholme, R Saglia, Z Sakr, AG Sánchez, D Sapone, B Sartoris, M Sauvage, P Schneider, T Schrabback, M Scodeggio, A Secroun, C Sirignano, G Sirri, J Skottfelt, L Stanco, J-L Starck, J Steinwagner, AN Taylor, H Teplitz, I Tereno, R Toledo-Moreo, I Tutusaus, EA Valentijn, L Valenziano, T Vassallo, A Veropalumbo, Y Wang, J Weller, G Zamorani, E Zucca, A Biviano, E Bozzo, D Di Ferdinando, R Farinelli, J Graciá-Carpio, N Mauri, V Scottez, M Tenti, Y Akrami, V Allevato, M Ballardini, A Blanchard, S Borgani, AS Borlaff, S Bruton, C Burigana, A Cappi, CS Carvalho, T Castro, G Cañas-Herrera, KC Chambers, AR Cooray, J Coupon, S Davini, S de la Torre, S Desai, G Desprez, A Díaz-Sánchez, S Di Domizio, H Dole, JA Escartin Vigo, S Escoffier, I Ferrero, F Finelli, L Gabarra, K Ganga, J Garcia-Bellido, E Gaztanaga, F Giacomini, G Gozaliasl, A Gregorio, H Hildebrandt, M Huertas-Company, O Ilbert, A Jimenez Muñoz, JJE Kajava, V Kansal, CC Kirkpatrick, L Legrand, A Loureiro, J Macias-Perez, M Magliocchetti, R Maoli, CJAP Martins, S Matthew, L Maurin, RB Metcalf, M Migliaccio, P Monaco, G Morgante, S Nadathur, AA Nucita, M Pöntinen, V Popa, C Porciani, D Potter, P Reimberg, A Schneider, M Sereno, A Shulevski, P Simon, A Spurio Mancini, J Stadel, M Tewes, R Teyssier, S Toft, M Tucci, J Valiviita, M Viel, IA Zinchenko
More details from the publisher
More details

Euclid preparation

Astronomy & Astrophysics EDP Sciences 689 (2024) ARTN A275

Authors:

B Bose, P Carrilho, M Marinucci, C Moretti, M Pietroni, E Carella, L Piga, Bs Wright, F Vernizzi, C Carbone, S Casas, G D’Amico, N Frusciante, K Koyama, F Pace, A Pourtsidou, M Baldi, Lf de la Bella, B Fiorini, C Giocoli, L Lombriser, N Aghanim, A Amara, S Andreon, N Auricchio, S Bardelli, C Bodendorf, D Bonino, E Branchini, M Brescia, J Brinchmann, S Camera, V Capobianco, Vf Cardone, J Carretero, M Castellano, S Cavuoti, A Cimatti, G Congedo, Cj Conselice, L Conversi, Y Copin, A Costille, F Courbin, Hm Courtois, A Da Silva, H Degaudenzi, Am Di Giorgio, F Dubath, Caj Duncan

Abstract:

Context. The Euclid space satellite mission will measure the large-scale clustering of galaxies at an unprecedented precision, providing a unique probe of modifications to the ?CDM model. Aims. We investigated the approximations needed to efficiently predict the large-scale clustering of matter and dark matter halos in the context of modified gravity and exotic dark energy scenarios. We examined the normal branch of the Dvali-Gabadadze-Porrati model, the Hu-Sawicki f(R) model, a slowly evolving dark energy model, an interacting dark energy model, and massive neutrinos. For each, we tested approximations for the perturbative kernel calculations, including the omission of screening terms and the use of perturbative kernels based on the Einstein-de Sitter universe; we explored different infrared-resummation schemes, tracer bias models and a linear treatment of massive neutrinos; we investigated various approaches for dealing with redshift-space distortions and modelling the mildly nonlinear scales, namely the Taruya-Nishimishi-Saito prescription and the effective field theory of large-scale structure. This work provides a first validation of the various codes being considered by Euclid for the spectroscopic clustering probe in beyond-?CDM scenarios. Methods. We calculated and compared the χ2 statistic to assess the different modelling choices. This was done by fitting the spectroscopic clustering predictions to measurements from numerical simulations and perturbation theory-based mock data. We compared the behaviour of this statistic in the beyond-?CDM cases, as a function of the maximum scale included in the fit, to the baseline ?CDM case. Results. We find that the Einstein-de Sitter approximation without screening is surprisingly accurate for the modified gravity cases when comparing to the halo clustering monopole and quadrupole obtained from simulations and mock data. Further, we find the same goodness-of-fit for both cases - the one including and the one omitting non-standard physics in the predictions. Our results suggest that the inclusion of multiple redshift bins, higher-order multipoles, higher-order clustering statistics (such as the bispectrum), and photometric probes such as weak lensing, will be essential to extract information on massive neutrinos, modified gravity and dark energy. Additionally, we show that the three codes used in our analysis, namely, PBJ, Pybird and MG-Copter, exhibit sub-percent agreement for k ≤ 0.5 h Mpc-1 across all the models. This consistency underscores their value as reliable tools.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet