Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Insertion of STC into TRT at the Department of Physics, Oxford
Credit: CERN

Dr Niamh Fearon

PDRA

Research theme

  • Particle astrophysics & cosmology

Sub department

  • Particle Physics

Research groups

  • LUX-ZEPLIN
niamh.fearon@physics.ox.ac.uk
Inspire HEP profile
  • About
  • Publications

A next-generation liquid xenon observatory for dark matter and neutrino physics

J.Phys.G 50 (2023) 1, 013001

Authors:

J Aalbers et al.

Abstract:

The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector.
More details from the publisher
Full PDF text

First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment

Phys.Rev.Lett. 131 (2023) 4, 041002

Authors:

J. Aalbers, D.S. Akerib, C.W. Akerlof, A.K. Al Musalhi, F. Alder, A. Alqahtani, S.K. Alsum, C.S. Amarasinghe, A. Ames, T.J. Anderson, N. Angelides, H.M. Araújo, J.E. Armstrong, M. Arthurs, S. Azadi, A.J. Bailey, A. Baker, J. Balajthy, S. Balashov, J. Bang, J.W. Bargemann, M.J. Barry, J. Barthel, D. Bauer, A. Baxter, K. Beattie, J. Belle, P. Beltrame, J. Bensinger, T. Benson, E.P. Bernard, A. Bhatti, A. Biekert, T.P. Biesiadzinski, H.J. Birch, B. Birrittella, G.M. Blockinger, K.E. Boast, B. Boxer, R. Bramante, C.A.J. Brew, P. Brás, J.H. Buckley, V.V. Bugaev, S. Burdin, J.K. Busenitz, M. Buuck, R. Cabrita, C. Carels, D.L. Carlsmith, B. Carlson, M.C. Carmona-Benitez, M. Cascella, C. Chan, A. Chawla, H. Chen, J.J. Cherwinka, N.I. Chott, A. Cole, J. Coleman, M.V. Converse, A. Cottle, G. Cox, W.W. Craddock, O. Creaner, D. Curran, A. Currie, J.E. Cutter, C.E. Dahl, A. David, J. Davis, T.J.R. Davison, J. Delgaudio, S. Dey, L. de Viveiros, A. Dobi, J.E.Y. Dobson, E. Druszkiewicz, A. Dushkin, T.K. Edberg, W.R. Edwards, M.M. Elnimr, W.T. Emmet, S.R. Eriksen, C.H. Faham, A. Fan, S. Fayer, N.M. Fearon, S. Fiorucci, H. Flaecher, P. Ford, V.B. Francis, E.D. Fraser, T. Fruth, R.J. Gaitskell, N.J. Gantos, D. Garcia, A. Geffre, V.M. Gehman, J. Genovesi , C. Ghag, R. Gibbons, E. Gibson, M.G.D. Gilchriese, S. Gokhale, B. Gomber, J. Green, A. Greenall, S. Greenwood, M.G.D.van der Grinten, C.B. Gwilliam, C.R. Hall, S. Hans, K. Hanzel, A. Harrison, E. Hartigan-O'Connor, S.J. Haselschwardt, S.A. Hertel, G. Heuermann, C. Hjemfelt, M.D. Hoff, E. Holtom, J.Y-K. Hor, M. Horn, D.Q. Huang, D. Hunt, C.M. Ignarra, R.G. Jacobsen, O. Jahangir, R.S. James, S.N. Jeffery, W. Ji, J. Johnson, A.C. Kaboth, A.C. Kamaha, K. Kamdin, V. Kasey, K. Kazkaz, J. Keefner, D. Khaitan, M. Khaleeq, A. Khazov, I. Khurana, Y.D. Kim, C.D. Kocher, D. Kodroff, L. Korley, E.V. Korolkova, J. Kras, H. Kraus, S. Kravitz, H.J. Krebs, L. Kreczko, B. Krikler, V.A. Kudryavtsev, S. Kyre, B. Landerud, E.A. Leason, C. Lee, J. Lee, D.S. Leonard, R. Leonard, K.T. Lesko, C. Levy, J. Li, F.-T. Liao, J. Liao, J. Lin, A. Lindote, R. Linehan, W.H. Lippincott, R. Liu, X. Liu, Y. Liu, C. Loniewski, M.I. Lopes, E. Lopez Asamar, B. López Paredes, W. Lorenzon, D. Lucero, S. Luitz, J.M. Lyle, P.A. Majewski, J. Makkinje, D.C. Malling, A. Manalaysay, L. Manenti, R.L. Mannino, N. Marangou, M.F. Marzioni, C. Maupin, M.E. McCarthy, C.T. McConnell, D.N. McKinsey, J. McLaughlin, Y. Meng, J. Migneault, E.H. Miller, E. Mizrachi, J.A. Mock, A. Monte, M.E. Monzani, J.A. Morad, J.D. Morales Mendoza, E. Morrison, B.J. Mount, M. Murdy, A.St.J. Murphy, D. Naim, A. Naylor, C. Nedlik, C. Nehrkorn, F. Neves, A. Nguyen, J.A. Nikoleyczik, A. Nilima, J. O'Dell, F.G. O'Neill, K. O'Sullivan, I. Olcina, M.A. Olevitch, K.C. Oliver-Mallory, J. Orpwood, D. Pagenkopf, S. Pal, K.J. Palladino, J. Palmer, M. Pangilinan, N. Parveen, S.J. Patton, E.K. Pease, B. Penning, C. Pereira, G. Pereira, E. Perry, T. Pershing, I.B. Peterson, A. Piepke, J. Podczerwinski, D. Porzio, S. Powell, R.M. Preece, K. Pushkin, Y. Qie, B.N. Ratcliff, J. Reichenbacher, L. Reichhart, C.A. Rhyne, A. Richards, Q. Riffard, G.R.C. Rischbieter, J.P. Rodrigues, A. Rodriguez, H.J. Rose, R. Rosero, P. Rossiter, T. Rushton, G. Rutherford, D. Rynders, J.S. Saba, D. Santone, A.B.M.R. Sazzad, R.W. Schnee, P.R. Scovell, D. Seymour, S. Shaw, T. Shutt, J.J. Silk, C. Silva, G. Sinev, K. Skarpaas, W. Skulski, R. Smith, M. Solmaz, V.N. Solovov, P. Sorensen, J. Soria, I. Stancu, M.R. Stark, A. Stevens, T.M. Stiegler, K. Stifter, R. Studley, B. Suerfu, T.J. Sumner, P. Sutcliffe, N. Swanson, M. Szydagis, M. Tan, D.J. Taylor, R. Taylor, W.C. Taylor, D.J. Temples, B.P. Tennyson, P.A. Terman, K.J. Thomas, D.R. Tiedt, M. Timalsina, W.H. To, A. Tomás, Z. Tong, D.R. Tovey, J. Tranter, M. Trask, M. Tripathi, D.R. Tronstad, C.E. Tull, W. Turner, L. Tvrznikova, U. Utku, J. Va'vra, A. Vacheret, A.C. Vaitkus, J.R. Verbus, E. Voirin, W.L. Waldron, A. Wang, B. Wang, J.J. Wang, W. Wang, Y. Wang, J.R. Watson, R.C. Webb, A. White, D.T. White, J.T. White, R.G. White, T.J. Whitis, M. Williams, W.J. Wisniewski, M.S. Witherell, F.L.H. Wolfs, J.D. Wolfs, S. Woodford, D. Woodward, S.D. Worm, C.J. Wright, Q. Xia, X. Xiang, Q. Xiao, J. Xu, M. Yeh, J. Yin, I. Young, P. Zarzhitsky, A. Zuckerman, E.A. Zweig

Abstract:

The LUX-ZEPLIN experiment is a dark matter detector centered on a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility in Lead, South Dakota, USA. This Letter reports results from LUX-ZEPLIN’s first search for weakly interacting massive particles (WIMPs) with an exposure of 60 live days using a fiducial mass of 5.5 t. A profile-likelihood ratio analysis shows the data to be consistent with a background-only hypothesis, setting new limits on spin-independent WIMP-nucleon, spin-dependent WIMP-neutron, and spin-dependent WIMP-proton cross sections for WIMP masses above 9  GeV/c2. The most stringent limit is set for spin-independent scattering at 36  GeV/c2, rejecting cross sections above 9.2×10-48  cm at the 90% confidence level.
More details from the publisher
Full PDF text

Background determination for the LUX-ZEPLIN dark matter experiment

Phys.Rev.D 108 (2023) 1, 012010

Authors:

J. Aalbers, D.S. Akerib, A.K. Al Musalhi, F. Alder, S.K. Alsum, C.S. Amarasinghe, A. Ames, T.J. Anderson, N. Angelides, H.M. Araújo, J.E. Armstrong, M. Arthurs, A. Baker, J. Bang, J.W. Bargemann, A. Baxter, K. Beattie, P. Beltrame, E.P. Bernard, A. Bhatti, A. Biekert, T.P. Biesiadzinski, H.J. Birch, G.M. Blockinger, B. Boxer, C.A.J. Brew, P. Brás, S. Burdin, M. Buuck, R. Cabrita, M.C. Carmona-Benitez, C. Chan, A. Chawla, H. Chen, A.P.S. Chiang, N.I. Chott, M.V. Converse, A. Cottle, G. Cox, O. Creaner, C.E. Dahl, A. David, S. Dey, L. de Viveiros, C. Ding, J.E.Y. Dobson, E. Druszkiewicz, S.R. Eriksen, A. Fan, N.M. Fearon, S. Fiorucci, H. Flaecher, E.D. Fraser, T. Fruth, R.J. Gaitskell, J. Genovesi, C. Ghag, R. Gibbons, M.G.D. Gilchriese, S. Gokhale, J. Green, M.G.D.van der Grinten, C.B. Gwilliam, C.R. Hall, S. Han, E. Hartigan-O'Connor, S.J. Haselschwardt, S.A. Hertel, G. Heuermann, M. Horn, D.Q. Huang, D. Hunt, C.M. Ignarra, R.G. Jacobsen, O. Jahangir, R.S. James, J. Johnson, A.C. Kaboth, A.C. Kamaha, D. Khaitan, I. Khurana, R. Kirk, D. Kodroff, L. Korley, E.V. Korolkova, H. Kraus, S. Kravitz, L. Kreczko, B. Krikler, V.A. Kudryavtsev, E.A. Leason, J. Lee, D.S. Leonard, K.T. Lesko, C. Levy, J. Lin, A. Lindote, R. Linehan, W.H. Lippincott, X. Liu , M.I. Lopes, E. Lopez Asamar, B. López Paredes, W. Lorenzon, C. Lu, S. Luitz, P.A. Majewski, A. Manalaysay, R.L. Mannino, N. Marangou, M.E. McCarthy, D.N. McKinsey, J. McLaughlin, E.H. Miller, E. Mizrachi, A. Monte, M.E. Monzani, J.D. Morales Mendoza, E. Morrison, B.J. Mount, M. Murdy, A.St.J. Murphy, D. Naim, A. Naylor, C. Nedlik, H.N. Nelson, F. Neves, A. Nguyen, J.A. Nikoleyczik, I. Olcina, K.C. Oliver-Mallory, J. Orpwood, K.J. Palladino, J. Palmer, N. Parveen, S.J. Patton, B. Penning, G. Pereira, E. Perry, T. Pershing, A. Piepke, D. Porzio, S. Poudel, Y. Qie, J. Reichenbacher, C.A. Rhyne, Q. Riffard, G.R.C. Rischbieter, H.S. Riyat, R. Rosero, P. Rossiter, T. Rushton, D. Santone, A.B.M.R. Sazzad, R.W. Schnee, S. Shaw, T. Shutt, J.J. Silk, C. Silva, G. Sinev, R. Smith, M. Solmaz, V.N. Solovov, P. Sorensen, J. Soria, I. Stancu, A. Stevens, K. Stifter, B. Suerfu, T.J. Sumner, N. Swanson, M. Szydagis, R. Taylor, W.C. Taylor, D.J. Temples, P.A. Terman, D.R. Tiedt, M. Timalsina, Z. Tong, D.R. Tovey, J. Tranter, M. Trask, M. Tripathi, D.R. Tronstad, W. Turner, U. Utku, A.C. Vaitkus, A. Wang, J.J. Wang, W. Wang, Y. Wang, J.R. Watson, R.C. Webb, T.J. Whitis, M. Williams, F.L.H. Wolfs, S. Woodford, D. Woodward, C.J. Wright, Q. Xia, X. Xiang, J. Xu, M. Yeh

Abstract:

The LUX-ZEPLIN experiment recently reported limits on WIMP-nucleus interactions from its initial science run, down to 9.2×10-48  cm2 for the spin-independent interaction of a 36  GeV/c2 WIMP at 90% confidence level. In this paper, we present a comprehensive analysis of the backgrounds important for this result and for other upcoming physics analyses, including neutrinoless double-beta decay searches and effective field theory interpretations of LUX-ZEPLIN data. We confirm that the in-situ determinations of bulk and fixed radioactive backgrounds are consistent with expectations from the ex-situ assays. The observed background rate after WIMP search criteria were applied was (6.3±0.5)×10-5  events/keVee/kg/day in the low-energy region, approximately 60 times lower than the equivalent rate reported by the LUX experiment.
More details from the publisher
Full PDF text

Search for new physics in low-energy electron recoils from the first LZ exposure

Phys.Rev.D 108 (2023) 7, 072006

Authors:

J. Aalbers, D.S. Akerib, A.K. Al Musalhi, F. Alder, C.S. Amarasinghe, A. Ames, T.J. Anderson, N. Angelides, H.M. Araújo, J.E. Armstrong, M. Arthurs, A. Baker, S. Balashov, J. Bang, J.W. Bargemann, A. Baxter, K. Beattie, P. Beltrame, T. Benson, A. Bhatti, A. Biekert, T.P. Biesiadzinski, H.J. Birch, G.M. Blockinger, B. Boxer, C.A.J. Brew, P. Brás, S. Burdin, M. Buuck, M.C. Carmona-Benitez, C. Chan, A. Chawla, H. Chen, J.J. Cherwinka, N.I. Chott, M.V. Converse, A. Cottle, G. Cox, D. Curran, C.E. Dahl, A. David, J. Delgaudio, S. Dey, L. de Viveiros, C. Ding, J.E.Y. Dobson, E. Druszkiewicz, S.R. Eriksen, A. Fan, N.M. Fearon, S. Fiorucci, H. Flaecher, E.D. Fraser, T.M.A. Fruth, R.J. Gaitskell, A. Geffre, J. Genovesi, C. Ghag, R. Gibbons, S. Gokhale, J. Green, M.G.D.van der Grinten, C.R. Hall, S. Han, E. Hartigan-O'Connor, S.J. Haselschwardt, D.Q. Huang, S.A. Hertel, G. Heuermann, M. Horn, D. Hunt, C.M. Ignarra, O. Jahangir, R.S. James, J. Johnson, A.C. Kaboth, A.C. Kamaha, D. Khaitan, A. Khazov, I. Khurana, J. Kim, J. Kingston, R. Kirk, D. Kodroff, L. Korley, E.V. Korolkova, H. Kraus, S. Kravitz, L. Kreczko, B. Krikler, V.A. Kudryavtsev, E.A. Leason, J. Lee, D.S. Leonard, K.T. Lesko, C. Levy, J. Lin, A. Lindote, R. Linehan , W.H. Lippincott, X. Liu, M.I. Lopes, E. Lopez Asamar, W. Lorenzon, C. Lu, D. Lucero, S. Luitz, P.A. Majewski, A. Manalaysay, R.L. Mannino, C. Maupin, M.E. McCarthy, G. McDowell, D.N. McKinsey, J. McLaughlin, E.H. Miller, E. Mizrachi, A. Monte, M.E. Monzani, J.D. Morales Mendoza, E. Morrison, B.J. Mount, M. Murdy, A.St.J. Murphy, D. Naim, A. Naylor, C. Nedlik, H.N. Nelson, F. Neves, A. Nguyen, J.A. Nikoleyczik, I. Olcina, K.C. Oliver-Mallory, J. Orpwood, K.J. Palladino, J. Palmer, N. Parveen, S.J. Patton, B. Penning, G. Pereira, E. Perry, T. Pershing, A. Piepke, S. Poudel, Y. Qie, J. Reichenbacher, C.A. Rhyne, Q. Riffard, G.R.C. Rischbieter, H.S. Riyat, R. Rosero, T. Rushton, D. Rynders, D. Santone, A.B.M.R. Sazzad, R.W. Schnee, S. Shaw, T. Shutt, J.J. Silk, C. Silva, G. Sinev, R. Smith, V.N. Solovov, P. Sorensen, J. Soria, I. Stancu, A. Stevens, K. Stifter, B. Suerfu, T.J. Sumner, M. Szydagis, W.C. Taylor, D.J. Temples, D.R. Tiedt, M. Timalsina, Z. Tong, D.R. Tovey, J. Tranter, M. Trask, M. Tripathi, D.R. Tronstad, W. Turner, A. Vacheret, A.C. Vaitkus, A. Wang, J.J. Wang, Y. Wang, J.R. Watson, R.C. Webb, L. Weeldreyer, T.J. Whitis, M. Williams, W.J. Wisniewski, F.L.H. Wolfs, S. Woodford, D. Woodward, C.J. Wright, Q. Xia, X. Xiang, J. Xu, M. Yeh, E.A. Zweig

Abstract:

The LUX-ZEPLIN (LZ) experiment is a dark matter detector centered on a dual-phase xenon time projection chamber. We report searches for new physics appearing through few-keV-scale electron recoils, using the experiment’s first exposure of 60 live days and a fiducial mass of 5.5 t. The data are found to be consistent with a background-only hypothesis, and limits are set on models for new physics including solar axion electron coupling, solar neutrino magnetic moment and millicharge, and electron couplings to galactic axionlike particles and hidden photons. Similar limits are set on weakly interacting massive particle (WIMP) dark matter producing signals through ionized atomic states from the Migdal effect.
More details from the publisher
Full PDF text

Search for new physics in low-energy electron recoils from the first LZ exposure

Phys.Rev.D 108 (2023) 7, 072006

Authors:

J. Aalbers, D.S. Akerib, A.K. Al Musalhi, F. Alder, C.S. Amarasinghe, A. Ames, T.J. Anderson, N. Angelides, H.M. Araújo, J.E. Armstrong, M. Arthurs, A. Baker, S. Balashov, J. Bang, J.W. Bargemann, A. Baxter, K. Beattie, P. Beltrame, T. Benson, A. Bhatti, A. Biekert, T.P. Biesiadzinski, H.J. Birch, G.M. Blockinger, B. Boxer, C.A.J. Brew, P. Brás, S. Burdin, M. Buuck, M.C. Carmona-Benitez, C. Chan, A. Chawla, H. Chen, J.J. Cherwinka, N.I. Chott, M.V. Converse, A. Cottle, G. Cox, D. Curran, C.E. Dahl, A. David, J. Delgaudio, S. Dey, L. de Viveiros, C. Ding, J.E.Y. Dobson, E. Druszkiewicz, S.R. Eriksen, A. Fan, N.M. Fearon, S. Fiorucci, H. Flaecher, E.D. Fraser, T.M.A. Fruth, R.J. Gaitskell, A. Geffre, J. Genovesi, C. Ghag, R. Gibbons, S. Gokhale, J. Green, M.G.D.van der Grinten, C.R. Hall, S. Han, E. Hartigan-O'Connor, S.J. Haselschwardt, D.Q. Huang, S.A. Hertel, G. Heuermann, M. Horn, D. Hunt, C.M. Ignarra, O. Jahangir, R.S. James, J. Johnson, A.C. Kaboth, A.C. Kamaha, D. Khaitan, A. Khazov, I. Khurana, J. Kim, J. Kingston, R. Kirk, D. Kodroff, L. Korley, E.V. Korolkova, H. Kraus, S. Kravitz, L. Kreczko, B. Krikler, V.A. Kudryavtsev, E.A. Leason, J. Lee, D.S. Leonard, K.T. Lesko, C. Levy, J. Lin, A. Lindote, R. Linehan , W.H. Lippincott, X. Liu, M.I. Lopes, E. Lopez Asamar, W. Lorenzon, C. Lu, D. Lucero, S. Luitz, P.A. Majewski, A. Manalaysay, R.L. Mannino, C. Maupin, M.E. McCarthy, G. McDowell, D.N. McKinsey, J. McLaughlin, E.H. Miller, E. Mizrachi, A. Monte, M.E. Monzani, J.D. Morales Mendoza, E. Morrison, B.J. Mount, M. Murdy, A.St.J. Murphy, D. Naim, A. Naylor, C. Nedlik, H.N. Nelson, F. Neves, A. Nguyen, J.A. Nikoleyczik, I. Olcina, K.C. Oliver-Mallory, J. Orpwood, K.J. Palladino, J. Palmer, N. Parveen, S.J. Patton, B. Penning, G. Pereira, E. Perry, T. Pershing, A. Piepke, S. Poudel, Y. Qie, J. Reichenbacher, C.A. Rhyne, Q. Riffard, G.R.C. Rischbieter, H.S. Riyat, R. Rosero, T. Rushton, D. Rynders, D. Santone, A.B.M.R. Sazzad, R.W. Schnee, S. Shaw, T. Shutt, J.J. Silk, C. Silva, G. Sinev, R. Smith, V.N. Solovov, P. Sorensen, J. Soria, I. Stancu, A. Stevens, K. Stifter, B. Suerfu, T.J. Sumner, M. Szydagis, W.C. Taylor, D.J. Temples, D.R. Tiedt, M. Timalsina, Z. Tong, D.R. Tovey, J. Tranter, M. Trask, M. Tripathi, D.R. Tronstad, W. Turner, A. Vacheret, A.C. Vaitkus, A. Wang, J.J. Wang, Y. Wang, J.R. Watson, R.C. Webb, L. Weeldreyer, T.J. Whitis, M. Williams, W.J. Wisniewski, F.L.H. Wolfs, S. Woodford, D. Woodward, C.J. Wright, Q. Xia, X. Xiang, J. Xu, M. Yeh, E.A. Zweig

Abstract:

The LUX-ZEPLIN (LZ) experiment is a dark matter detector centered on a dual-phase xenon time projection chamber. We report searches for new physics appearing through few-keV-scale electron recoils, using the experiment’s first exposure of 60 live days and a fiducial mass of 5.5 t. The data are found to be consistent with a background-only hypothesis, and limits are set on models for new physics including solar axion electron coupling, solar neutrino magnetic moment and millicharge, and electron couplings to galactic axionlike particles and hidden photons. Similar limits are set on weakly interacting massive particle (WIMP) dark matter producing signals through ionized atomic states from the Migdal effect.
More details from the publisher
Full PDF text

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet