Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Professor Pedro Ferreira

Professor of Astrophysics

Research theme

  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
pedro.ferreira@physics.ox.ac.uk
Telephone: 01865 (2)73366
Denys Wilkinson Building, room 757
Personal Webpage
  • About
  • Publications

Structure of Doppler peaks induced by active perturbations

PHYSICAL REVIEW D 54:6 (1996) 3727-3744

Authors:

J Magueijo, A Albrecht, P Ferreira, D Coulson
More details from the publisher
More details

Doppler peaks from active perturbations

(1995)

Authors:

Joao Magueijo, Andreas Albrecht, David Coulson, Pedro Ferreira
More details from the publisher

Doppler peaks from active perturbations

ArXiv astro-ph/9511042 (1995)

Authors:

Joao Magueijo, Andreas Albrecht, David Coulson, Pedro Ferreira

Abstract:

We examine how the qualitative structure of the Doppler peaks in the angular power spectrum of the cosmic microwave anisotropy depends on the fundamental nature of the perturbations which produced them. The formalism of Hu and Sugiyama is extended to treat models with cosmic defects. We discuss how perturbations can be ``active'' or ``passive'' and ``incoherent'' or ``coherent'', and show how causality and scale invariance play rather different roles in these various cases. We find that the existence of secondary Doppler peaks and the rough placing of the primary peak unambiguously reflect these basic properties.
Details from ArXiV
More details from the publisher

Causality, randomness, and the microwave background

(1995)

Authors:

Andreas Albrecht, David Coulson, Pedro Ferreira, Joao Magueijo
More details from the publisher

Causality, randomness, and the microwave background

ArXiv astro-ph/9505030 (1995)

Authors:

Andreas Albrecht, David Coulson, Pedro Ferreira, Joao Magueijo

Abstract:

Fluctuations in the cosmic microwave background (CMB) temperature are being studied with ever increasing precision. Two competing types of theories might describe the origins of these fluctuations: ``inflation'' and ``defects''. Here we show how the differences between these two scenarios can give rise to striking signatures in the microwave fluctuations on small scales, assuming a standard recombination history. These should enable high resolution measurements of CMB anisotropies to distinguish between these two broad classes of theories, independent of the precise details of each.
Details from ArXiV
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 114
  • Page 115
  • Page 116
  • Page 117
  • Page 118
  • Current page 119
  • Page 120
  • Page 121
  • Page 122
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet