Foreground subtraction in intensity mapping with the SKA
Proceedings of Science 9-13-June-2014 (2014)
Abstract:
21 cm intensity mapping experiments aim to observe the diffuse neutral hydrogen (HI) distribution on large scales which traces the Cosmic structure. The Square Kilometre Array (SKA) will have the capacity to measure the 21 cm signal over a large fraction of the sky. However, the redshifted 21 cm signal in the respective frequencies is faint compared to the Galactic foregrounds produced by synchrotron and free-free electron emission. In this article, we review selected foreground subtraction methods suggested to effectively separate the 21 cm signal from the foregrounds with intensity mapping simulations or data. We simulate an intensity mapping experiment feasible with SKA phase 1 including extragalactic and Galactic foregrounds. We give an example of the residuals of the foreground subtraction with a independent component analysis and show that the angular power spectrum is recovered within the statistical errors on most scales. Additionally, the scale of the Baryon Acoustic Oscillations is shown to be unaffected by foreground subtraction.Measuring baryon acoustic oscillations with future SKA surveys
Proceedings of Science 9-13-June-2014 (2014)
Abstract:
The imprint of baryon acoustic oscillations (BAO) in large-scale structure can be used as a standard ruler for mapping out the cosmic expansion history, and hence for testing cosmological models. In this chapter we briefly describe the scientific background to the BAO technique, and forecast the potential of the Phase 1 and 2 SKA telescopes to perform BAO surveys using both galaxy catalogues and intensity mapping, assessing their competitiveness with current and future optical galaxy surveys. We find that a 25,000 deg2 intensity mapping survey on a Phase 1 array will preferentially constrain the radial BAO, providing a highly competitive 2% constraint on the expansion rate at z ≃ 2. A 30,000 deg2 galaxy redshift survey on SKA2 will outperform all other planned experiments for z < ∼ 1:4.Measuring redshift-space distortions with future SKA surveys
Proceedings of Science 9-13-June-2014 (2014)
Abstract:
The peculiar motion of galaxies can be a particularly sensitive probe of gravitational collapse. As such, it can be used to measure the dynamics of dark matter and dark energy as well the nature of the gravitational laws at play on cosmological scales. Peculiar motions manifest themselves as an overall anisotropy in the measured clustering signal as a function of the angle to the line-ofsight, known as redshift-space distortion (RSD). Limiting factors in this measurement include our ability to model non-linear galaxy motions on small scales and the complexities of galaxy bias. The anisotropy in the measured clustering pattern in redshift-space is also driven by the unknown distance factors at the redshift in question, the Alcock-Paczynski distortion. This weakens growth rate measurements, but permits an extra geometric probe of the Hubble expansion rate. In this short chapter we will briefly describe the scientific background to the RSD technique, and forecast the potential of the SKA phase 1 and the SKA2 to measure the growth rate using both galaxy catalogues and intensity mapping, assessing their competitiveness with current and future optical galaxy surveys.Probing the accelerating Universe with radio weak lensing in the JVLA Sky Survey
ArXiv 1312.5618 (2013)
Abstract:
We outline the prospects for performing pioneering radio weak gravitational lensing analyses using observations from a potential forthcoming JVLA Sky Survey program. A large-scale survey with the JVLA can offer interesting and unique opportunities for performing weak lensing studies in the radio band, a field which has until now been the preserve of optical telescopes. In particular, the JVLA has the capacity for large, deep radio surveys with relatively high angular resolution, which are the key characteristics required for a successful weak lensing study. We highlight the potential advantages and unique aspects of performing weak lensing in the radio band. In particular, the inclusion of continuum polarisation information can greatly reduce noise in weak lensing reconstructions and can also remove the effects of intrinsic galaxy alignments, the key astrophysical systematic effect that limits weak lensing at all wavelengths. We identify a VLASS "deep fields" program (total area ~10-20 square degs), to be conducted at L-band and with high-resolution (A-array configuration), as the optimal survey strategy from the point of view of weak lensing science. Such a survey will build on the unique strengths of the JVLA and will remain unsurpassed in terms of its combination of resolution and sensitivity until the advent of the Square Kilometre Array. We identify the best fields on the JVLA-accessible sky from the point of view of overlapping with existing deep optical and near infra-red data which will provide crucial redshift information and facilitate a host of additional compelling multi-wavelength science.Sporadic and reversible chromothripsis in chronic lymphocytic leukemia revealed by longitudinal genomic analysis.
Leukemia 27:12 (2013) 2376-2379