Noether Identities and Gauge-Fixing the Action for Cosmological Perturbations
(2013)
Noether Identities and Gauge-Fixing the Action for Cosmological Perturbations
ArXiv 1311.3828 (2013)
Abstract:
We propose and develop a general algorithm for finding the action for cosmological perturbations which rivals the conventional, gauge-invariant approach and can be applied to theories with more than one metric. We then apply it to a particular case of bigravity, focusing on the Eddington- inspired Born-Infeld theory, and show that we can obtain a nearly scale-invariant power spectrum for both scalar and tensor primordial quantum perturbations. Unfortunately, in the case of the minimal Eddington-inspired Born-Infeld theory, we find that the tensor-to-scalar ratio of perturbations is unacceptably large. We discuss the applicability of our general method and the possibility of resurrecting the specific theory we have looked at.Relativistic scalar fields and the quasi-static approximation in theories of modified gravity
(2013)
Relativistic scalar fields and the quasi-static approximation in theories of modified gravity
ArXiv 1310.3266 (2013)
Abstract:
Relativistic scalar fields are ubiquitous in modified theories of gravity. An important tool in understanding their impact on structure formation, especially in the context of N-body simulations, is the quasi-static approximation in which the time evolution of perturbations in the scalar fields is discarded. We show that this approximation must be used with some care by studying linearly perturbed scalar field cosmologies and quantifying the errors that arise from taking the quasi-static limit. We focus on f(R) and chameleon models and link the accuracy of the quasi-static approximation to the fast/slow-roll behaviour of the background and its proximity to {\Lambda}CDM. Investigating a large range of scales, from super- to sub-horizon, we find that slow-rolling ({\Lambda}CDM-like) backgrounds generically result in good quasi-static behaviour, even on (super-)horizon scales. We also discuss how the approximation might affect studying the non-linear growth of structure in numerical N-body simulations.PRISM (Polarized Radiation Imaging and Spectroscopy Mission): An Extended White Paper
(2013)