Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Professor Pedro Ferreira

Professor of Astrophysics

Research theme

  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
pedro.ferreira@physics.ox.ac.uk
Telephone: 01865 (2)73366
Denys Wilkinson Building, room 757
Personal Webpage
  • About
  • Publications

Correlations Between the WMAP and MAXIMA Cosmic Microwave Background Anisotropy Maps

(2003)

Authors:

ME Abroe, J Borrill, PG Ferreira, S Hanany, AH Jaffe, BR Johnson, AT Lee, B Rabii, PL Richards, GF Smoot, R Stompor, CD Winant, JHP Wu
More details from the publisher

Correlations Between the WMAP and MAXIMA Cosmic Microwave Background Anisotropy Maps

ArXiv astro-ph/0308355 (2003)

Authors:

ME Abroe, J Borrill, PG Ferreira, S Hanany, AH Jaffe, BR Johnson, AT Lee, B Rabii, PL Richards, GF Smoot, R Stompor, CD Winant, JHP Wu

Abstract:

We cross-correlate the cosmic microwave background temperature anisotropy maps from the WMAP, MAXIMA-I, and MAXIMA-II experiments. We use the cross-spectrum, which is the spherical harmonic transform of the angular two-point correlation function, to quantify the correlation as a function of angular scale. We find that the three possible pairs of cross-spectra are in close agreement with each other and with the power spectra of the individual maps. The probability that there is no correlation between the maps is smaller than 1 * 10^(-8). We also calculate power spectra for maps made of differences between pairs of maps, and show that they are consistent with no signal. The results conclusively show that the three experiments not only display the same statistical properties of the CMB anisotropy, but also detect the same features wherever the observed sky areas overlap. We conclude that the contribution of systematic errors to these maps is negligible and that MAXIMA and WMAP have accurately mapped the cosmic microwave background anisotropy.
Details from ArXiV
More details from the publisher

MAXIPOL: A Balloon-borne Experiment for Measuring the Polarization Anisotropy of the Cosmic Microwave Background Radiation

(2003)

Authors:

BR Johnson, ME Abroe, P Ade, J Bock, J Borrill, JS Collins, P Ferreira, S Hanany, AH Jaffe, T Jones, AT Lee, L Levinson, T Matsumura, B Rabii, T Renbarger, PL Richards, GF Smoot, R Stompor, HT Tran, CD Winant
More details from the publisher

CMB Likelihood Functions for Beginners and Experts

(2003)

Authors:

Andrew H Jaffe, JR Bond, PG Ferreira, LE Knox
More details from the publisher

CMB Likelihood Functions for Beginners and Experts

ArXiv astro-ph/0306506 (2003)

Authors:

Andrew H Jaffe, JR Bond, PG Ferreira, LE Knox

Abstract:

Although the broad outlines of the appropriate pipeline for cosmological likelihood analysis with CMB data has been known for several years, only recently have we had to contend with the full, large-scale, computationally challenging problem involving both highly-correlated noise and extremely large datasets ($N > 1000$). In this talk we concentrate on the beginning and end of this process. First, we discuss estimating the noise covariance from the data itself in a rigorous and unbiased way; this is essentially an iterated minimum-variance mapmaking approach. We also discuss the unbiased determination of cosmological parameters from estimates of the power spectrum or experimental bandpowers.
Details from ArXiV
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 91
  • Page 92
  • Page 93
  • Page 94
  • Current page 95
  • Page 96
  • Page 97
  • Page 98
  • Page 99
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet