Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Marylou Fournier Tondreau MSc, MSc, PharmD

Graduate Student

Research theme

  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Planetary Climate Dynamics
marylou.fourniertondreau@physics.ox.ac.uk
Atmospheric Physics Clarendon Laboratory, room 206
  • About
  • Publications

JWST/NIRISS Reveals the Water-rich “Steam World” Atmosphere of GJ 9827 d

The Astrophysical Journal Letters American Astronomical Society 974:1 (2024) L10

Authors:

Caroline Piaulet-Ghorayeb, Björn Benneke, Michael Radica, Eshan Raul, Louis-Philippe Coulombe, Eva-Maria Ahrer, Daria Kubyshkina, Ward S Howard, Joshua Krissansen-Totton, Ryan J MacDonald, Pierre-Alexis Roy, Amy Louca, Duncan Christie, Marylou Fournier-Tondreau, Romain Allart, Yamila Miguel, Hilke E Schlichting, Luis Welbanks, Charles Cadieux, Caroline Dorn, Thomas M Evans-Soma, Jonathan J Fortney, Raymond Pierrehumbert, David Lafrenière

Abstract:

With sizable volatile envelopes but smaller radii than the solar system ice giants, sub-Neptunes have been revealed as one of the most common types of planet in the galaxy. While the spectroscopic characterization of larger sub-Neptunes (2.5–4 R ⊕) has revealed hydrogen-dominated atmospheres, smaller sub-Neptunes (1.6–2.5 R ⊕) could either host thin, rapidly evaporating, hydrogen-rich atmospheres or be stable, metal-rich “water worlds” with high mean molecular weight atmospheres and a fundamentally different formation and evolutionary history. Here, we present the 0.6–2.8 μm JWST/NIRISS/SOSS transmission spectrum of GJ 9827 d, the smallest (1.98 R ⊕) warm (T eq,A=0.3 ∼ 620 K) sub-Neptune where atmospheric absorbers have been detected to date. Our two transit observations with NIRISS/SOSS, combined with the existing HST/WFC3 spectrum, enable us to break the clouds–metallicity degeneracy. We detect water in a highly metal-enriched “steam world” atmosphere (O/H of ∼4 by mass and H2O found to be the background gas with a volume mixing ratio of >31%). We further show that these results are robust to stellar contamination through the transit light source effect. We do not detect escaping metastable He, which, combined with previous nondetections of escaping He and H, supports the steam atmosphere scenario. In water-rich atmospheres, hydrogen loss driven by water photolysis happens predominantly in the ionized form, which eludes observational constraints. We also detect several flares in the NIRISS/SOSS light curves with far-UV energies of the order of 1030 erg, highlighting the active nature of the star. Further atmospheric characterization of GJ 9827 d probing carbon or sulfur species could reveal the origin of its high metal enrichment.
More details from the publisher
Details from ORA
More details

Transmission Spectroscopy of the Habitable Zone Exoplanet LHS 1140 b with JWST/NIRISS

The Astrophysical Journal Letters American Astronomical Society 970:1 (2024) L2

Authors:

Charles Cadieux, René Doyon, Ryan J MacDonald, Martin Turbet, Étienne Artigau, Olivia Lim, Michael Radica, Thomas J Fauchez, Salma Salhi, Lisa Dang, Loïc Albert, Louis-Philippe Coulombe, Nicolas B Cowan, David Lafrenière, Alexandrine L’Heureux, Caroline Piaulet-Ghorayeb, Björn Benneke, Ryan Cloutier, Benjamin Charnay, Neil J Cook, Marylou Fournier-Tondreau, Mykhaylo Plotnykov, Diana Valencia

Abstract:

LHS 1140 b is the second-closest temperate transiting planet to Earth with an equilibrium temperature low enough to support surface liquid water. At 1.730 ± 0.025 R ⊕, LHS 1140 b falls within the radius valley separating H2-rich mini-Neptunes from rocky super-Earths. Recent mass and radius revisions indicate a bulk density significantly lower than expected for an Earth-like rocky interior, suggesting that LHS 1140 b could be either a mini-Neptune with a small envelope of hydrogen (∼0.1% by mass) or a water world (9%–19% water by mass). Atmospheric characterization through transmission spectroscopy can readily discern between these two scenarios. Here we present two JWST/NIRISS transit observations of LHS 1140 b, one of which captures a serendipitous transit of LHS 1140 c. The combined transmission spectrum of LHS 1140 b shows a telltale spectral signature of unocculted faculae (5.8σ), covering ∼20% of the visible stellar surface. Besides faculae, our spectral retrieval analysis reveals tentative evidence of residual spectral features, best fit by Rayleigh scattering from a N2-dominated atmosphere (2.3σ), irrespective of the consideration of atmospheric hazes. We also show through Global Climate Models (GCMs) that H2-rich atmospheres of various compositions (100×, 300×, 1000× solar metallicity) are ruled out to >10σ. The GCM calculations predict that water clouds form below the transit photosphere, limiting their impact on transmission data. Our observations suggest that LHS 1140 b is either airless or, more likely, surrounded by an atmosphere with a high mean molecular weight. Our tentative evidence of a N2-rich atmosphere provides strong motivation for future transmission spectroscopy observations of LHS 1140 b.
More details from the publisher
Details from ORA
More details

Near-infrared transmission spectroscopy of HAT-P-18 b with NIRISS: Disentangling planetary and stellar features in the era of JWST

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 528:2 (2024) 3354-3377

Authors:

Marylou Fournier-Tondreau, Ryan J MacDonald, Michael Radica, David Lafrenière, Luis Welbanks, Caroline Piaulet, Louis-Philippe Coulombe, Romain Allart, Kim Morel, Étienne Artigau, Loïc Albert, Olivia Lim, René Doyon, Björn Benneke, Jason F Rowe, Antoine Darveau-Bernier, Nicolas B Cowan, Nikole K Lewis, Neil J Cook, Laura Flagg, Frédéric Genest, Stefan Pelletier, Doug Johnstone, Lisa Dang, Lisa Kaltenegger, Jake Taylor, Jake D Turner
More details from the publisher
More details

Near-Infrared Transmission Spectroscopy of HAT-P-18$\,$b with NIRISS: Disentangling Planetary and Stellar Features in the Era of JWST

ArXiv 2310.1495 (2023)

Authors:

Marylou Fournier-Tondreau, Ryan J MacDonald, Michael Radica, David Lafrenière, Luis Welbanks, Caroline Piaulet, Louis-Philippe Coulombe, Romain Allart, Kim Morel, Étienne Artigau, Loïc Albert, Olivia Lim, René Doyon, Björn Benneke, Jason F Rowe, Antoine Darveau-Bernier, Nicolas B Cowan, Nikole K Lewis, Neil James Cook, Laura Flagg, Frédéric Genest, Stefan Pelletier, Doug Johnstone, Lisa Dang, Lisa Kaltenegger, Jake Taylor, Jake D Turner
Details from ArXiV

Atmospheric Reconnaissance of TRAPPIST-1 b with JWST/NIRISS: Evidence for Strong Stellar Contamination in the Transmission Spectra

The Astrophysical Journal Letters American Astronomical Society 955:1 (2023) l22

Authors:

Olivia Lim, Björn Benneke, René Doyon, Ryan J MacDonald, Caroline Piaulet, Étienne Artigau, Louis-Philippe Coulombe, Michael Radica, Alexandrine L’Heureux, Loïc Albert, Benjamin V Rackham, Julien de Wit, Salma Salhi, Pierre-Alexis Roy, Laura Flagg, Marylou Fournier-Tondreau, Jake Taylor, Neil J Cook, David Lafrenière, Nicolas B Cowan, Lisa Kaltenegger, Jason F Rowe, Néstor Espinoza, Lisa Dang, Antoine Darveau-Bernier
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet