JWST/NIRISS Reveals the Water-rich “Steam World” Atmosphere of GJ 9827 d
The Astrophysical Journal Letters American Astronomical Society 974:1 (2024) L10
Abstract:
With sizable volatile envelopes but smaller radii than the solar system ice giants, sub-Neptunes have been revealed as one of the most common types of planet in the galaxy. While the spectroscopic characterization of larger sub-Neptunes (2.5–4 R ⊕) has revealed hydrogen-dominated atmospheres, smaller sub-Neptunes (1.6–2.5 R ⊕) could either host thin, rapidly evaporating, hydrogen-rich atmospheres or be stable, metal-rich “water worlds” with high mean molecular weight atmospheres and a fundamentally different formation and evolutionary history. Here, we present the 0.6–2.8 μm JWST/NIRISS/SOSS transmission spectrum of GJ 9827 d, the smallest (1.98 R ⊕) warm (T eq,A=0.3 ∼ 620 K) sub-Neptune where atmospheric absorbers have been detected to date. Our two transit observations with NIRISS/SOSS, combined with the existing HST/WFC3 spectrum, enable us to break the clouds–metallicity degeneracy. We detect water in a highly metal-enriched “steam world” atmosphere (O/H of ∼4 by mass and H2O found to be the background gas with a volume mixing ratio of >31%). We further show that these results are robust to stellar contamination through the transit light source effect. We do not detect escaping metastable He, which, combined with previous nondetections of escaping He and H, supports the steam atmosphere scenario. In water-rich atmospheres, hydrogen loss driven by water photolysis happens predominantly in the ionized form, which eludes observational constraints. We also detect several flares in the NIRISS/SOSS light curves with far-UV energies of the order of 1030 erg, highlighting the active nature of the star. Further atmospheric characterization of GJ 9827 d probing carbon or sulfur species could reveal the origin of its high metal enrichment.Transmission Spectroscopy of the Habitable Zone Exoplanet LHS 1140 b with JWST/NIRISS
The Astrophysical Journal Letters American Astronomical Society 970:1 (2024) L2
Abstract:
LHS 1140 b is the second-closest temperate transiting planet to Earth with an equilibrium temperature low enough to support surface liquid water. At 1.730 ± 0.025 R ⊕, LHS 1140 b falls within the radius valley separating H2-rich mini-Neptunes from rocky super-Earths. Recent mass and radius revisions indicate a bulk density significantly lower than expected for an Earth-like rocky interior, suggesting that LHS 1140 b could be either a mini-Neptune with a small envelope of hydrogen (∼0.1% by mass) or a water world (9%–19% water by mass). Atmospheric characterization through transmission spectroscopy can readily discern between these two scenarios. Here we present two JWST/NIRISS transit observations of LHS 1140 b, one of which captures a serendipitous transit of LHS 1140 c. The combined transmission spectrum of LHS 1140 b shows a telltale spectral signature of unocculted faculae (5.8σ), covering ∼20% of the visible stellar surface. Besides faculae, our spectral retrieval analysis reveals tentative evidence of residual spectral features, best fit by Rayleigh scattering from a N2-dominated atmosphere (2.3σ), irrespective of the consideration of atmospheric hazes. We also show through Global Climate Models (GCMs) that H2-rich atmospheres of various compositions (100×, 300×, 1000× solar metallicity) are ruled out to >10σ. The GCM calculations predict that water clouds form below the transit photosphere, limiting their impact on transmission data. Our observations suggest that LHS 1140 b is either airless or, more likely, surrounded by an atmosphere with a high mean molecular weight. Our tentative evidence of a N2-rich atmosphere provides strong motivation for future transmission spectroscopy observations of LHS 1140 b.Near-infrared transmission spectroscopy of HAT-P-18 b with NIRISS: Disentangling planetary and stellar features in the era of JWST
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 528:2 (2024) 3354-3377
Near-Infrared Transmission Spectroscopy of HAT-P-18$\,$b with NIRISS: Disentangling Planetary and Stellar Features in the Era of JWST
ArXiv 2310.1495 (2023)
Atmospheric Reconnaissance of TRAPPIST-1 b with JWST/NIRISS: Evidence for Strong Stellar Contamination in the Transmission Spectra
The Astrophysical Journal Letters American Astronomical Society 955:1 (2023) l22