Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
GOES-16 satellite image

Lilli Freischem (she/her)

Graduate Student - NERC DTP

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Atmospheric processes
  • Climate processes
lilli.freischem@physics.ox.ac.uk
  • About
  • Teaching
  • Publications

Image calibration between the Extreme Ultraviolet Imagers on Solar Orbiter and the Solar Dynamics Observatory

Astronomy and Astrophysics 703 (2025)

Authors:

C Schirninger, R Jarolim, AM Veronig, A Jungbluth, L Freischem, JE Johnson, V Delouille, L Dolla, A Spalding

Abstract:

To study and monitor the Sun and its atmosphere, various space missions have been launched in the past decades. With rapid improvement in technology and different mission requirements, the data products are subject to constant change. However, for such long-term studies as solar variability or multi-instrument investigations, uniform data series are required. In this study, we built on and expanded the instrument-to-instrument translation (ITI) framework, which provides unpaired image translations. We applied the tool to data from the Extreme Ultraviolet Imager (EUI), specifically the Full Sun Imager (FSI) on Solar Orbiter and the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). This approach allowed us to create a homogeneous dataset that combines the two extreme ultraviolet (EUV) imagers in the 174/171 Å and 304 Å channels. We demonstrate that ITI is able to provide image calibration between Solar Orbiter and SDO EUV imagers, independent of the varying orbital position of Solar Orbiter. The comparison of the intercalibrated light curves derived from 174/171 Å and 304 Å filtergrams from EUI and AIA shows that ITI can provide uniform data series that outperform a standard baseline calibration. We evaluate the perceptual similarity in terms of the Fréchet inception distance, which demonstrates that ITI achieves a significant improvement of perceptual similarity between EUI and AIA. The study provides intercalibrated observations from Solar Orbiter/EUI/FSI with SDO/AIA, enabling a homogeneous dataset suitable for solar cycle studies and multi-viewpoint investigations.
More details from the publisher

nextGEMS: entering the era of kilometer-scale Earth system modeling

Geoscientific Model Development Copernicus Publications 18:20 (2025) 7735-7761

Authors:

Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal

Abstract:

Abstract. The Next Generation of Earth Modeling Systems (nextGEMS) project aimed to produce multidecadal climate simulations, for the first time, with resolved kilometer-scale (km-scale) processes in the ocean, land, and atmosphere. In only 3 years, nextGEMS achieved this milestone with the two km-scale Earth system models, ICOsahedral Non-hydrostatic model (ICON) and Integrated Forecasting System coupled to the Finite-volumE Sea ice-Ocean Model (IFS-FESOM). nextGEMS was based on three cornerstones: (1) developing km-scale Earth system models with small errors in the energy and water balance, (2) performing km-scale climate simulations with a throughput greater than 1 simulated year per day, and (3) facilitating new workflows for an efficient analysis of the large simulations with common data structures and output variables. These cornerstones shaped the timeline of nextGEMS, divided into four cycles. Each cycle marked the release of a new configuration of ICON and IFS-FESOM, which were evaluated at hackathons. The hackathon participants included experts from climate science, software engineering, and high-performance computing as well as users from the energy and agricultural sectors. The continuous efforts over the four cycles allowed us to produce 30-year simulations with ICON and IFS-FESOM, spanning the period 2020–2049 under the SSP3-7.0 scenario. The throughput was about 500 simulated days per day on the Levante supercomputer of the German Climate Computing Center (DKRZ). The simulations employed a horizontal grid of about 5 km resolution in the ocean and 10 km resolution in the atmosphere and land. Aside from this technical achievement, the simulations allowed us to gain new insights into the realism of ICON and IFS-FESOM. Beyond its time frame, nextGEMS builds the foundation of the Climate Change Adaptation Digital Twin developed in the Destination Earth initiative and paves the way for future European research on climate change.
More details from the publisher
Details from ORA

Discovering convection biases in global km-scale climate models using computer vision

Copernicus Publications (2025)

Authors:

Lilli Freischem, Philipp Weiss, Hannah Christensen, Philip Stier
More details from the publisher

3D Cloud reconstruction through geospatially-aware Masked Autoencoders

Workshop paper at “Machine Learning and the Physical Sciences”, NeurIPS (2024)

Authors:

Stella Girtsou, Emiliano Diaz Salas-Porras, Lilli J Freischem, Joppe Massant, Kyriaki-Margarita Bintsi, Guiseppe Castiglione, William Jones, Michael Eisinger, Emmanuel Johnson, Anna Jungbluth

Abstract:

Clouds play a key role in Earth's radiation balance with complex effects that introduce large uncertainties into climate models. Real-time 3D cloud data is essential for improving climate predictions. This study leverages geostationary imagery from MSG/SEVIRI and radar reflectivity measurements of cloud profiles from CloudSat/CPR to reconstruct 3D cloud structures. We first apply self-supervised learning (SSL) methods-Masked Autoencoders (MAE) and geospatially-aware SatMAE on unlabelled MSG images, and then fine-tune our models on matched image-profile pairs. Our approach outperforms state-of-the-art methods like U-Nets, and our geospatial encoding further improves prediction results, demonstrating the potential of SSL for cloud reconstruction.
More details from the publisher

Multifractal Analysis for Evaluating the Representation of Clouds in Global Kilometer-Scale Models

Geophysical Research Letters, 51 (2024)

Authors:

Lilli J Freischem, Philipp Weiss, Hannah M Christensen, Philip Stier

Abstract:

Clouds are one of the largest sources of uncertainty in climate predictions. Global km-scale models need to simulate clouds and precipitation accurately to predict future climates. To isolate issues in their representation of clouds, models need to be thoroughly evaluated with observations. Here, we introduce multifractal analysis as a method for evaluating km-scale simulations. We apply it to outgoing longwave radiation fields to investigate structural differences between observed and simulated anvil clouds. We compute fractal parameters which compactly characterize the scaling behavior of clouds and can be compared across simulations and observations. We use this method to evaluate the nextGEMS ICON simulations via comparison with observations from the geostationary satellite GOES-16. We find that multifractal scaling exponents in the ICON model are significantly lower than in observations. We conclude that too much variability is contained in the small scales (<100 km) leading to less organized convection and smaller, isolated anvils.
More details from the publisher

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet