Image calibration between the Extreme Ultraviolet Imagers on Solar Orbiter and the Solar Dynamics Observatory
Astronomy and Astrophysics 703 (2025)
Abstract:
To study and monitor the Sun and its atmosphere, various space missions have been launched in the past decades. With rapid improvement in technology and different mission requirements, the data products are subject to constant change. However, for such long-term studies as solar variability or multi-instrument investigations, uniform data series are required. In this study, we built on and expanded the instrument-to-instrument translation (ITI) framework, which provides unpaired image translations. We applied the tool to data from the Extreme Ultraviolet Imager (EUI), specifically the Full Sun Imager (FSI) on Solar Orbiter and the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). This approach allowed us to create a homogeneous dataset that combines the two extreme ultraviolet (EUV) imagers in the 174/171 Å and 304 Å channels. We demonstrate that ITI is able to provide image calibration between Solar Orbiter and SDO EUV imagers, independent of the varying orbital position of Solar Orbiter. The comparison of the intercalibrated light curves derived from 174/171 Å and 304 Å filtergrams from EUI and AIA shows that ITI can provide uniform data series that outperform a standard baseline calibration. We evaluate the perceptual similarity in terms of the Fréchet inception distance, which demonstrates that ITI achieves a significant improvement of perceptual similarity between EUI and AIA. The study provides intercalibrated observations from Solar Orbiter/EUI/FSI with SDO/AIA, enabling a homogeneous dataset suitable for solar cycle studies and multi-viewpoint investigations.nextGEMS: entering the era of kilometer-scale Earth system modeling
Geoscientific Model Development Copernicus Publications 18:20 (2025) 7735-7761
Abstract:
Abstract. The Next Generation of Earth Modeling Systems (nextGEMS) project aimed to produce multidecadal climate simulations, for the first time, with resolved kilometer-scale (km-scale) processes in the ocean, land, and atmosphere. In only 3 years, nextGEMS achieved this milestone with the two km-scale Earth system models, ICOsahedral Non-hydrostatic model (ICON) and Integrated Forecasting System coupled to the Finite-volumE Sea ice-Ocean Model (IFS-FESOM). nextGEMS was based on three cornerstones: (1) developing km-scale Earth system models with small errors in the energy and water balance, (2) performing km-scale climate simulations with a throughput greater than 1 simulated year per day, and (3) facilitating new workflows for an efficient analysis of the large simulations with common data structures and output variables. These cornerstones shaped the timeline of nextGEMS, divided into four cycles. Each cycle marked the release of a new configuration of ICON and IFS-FESOM, which were evaluated at hackathons. The hackathon participants included experts from climate science, software engineering, and high-performance computing as well as users from the energy and agricultural sectors. The continuous efforts over the four cycles allowed us to produce 30-year simulations with ICON and IFS-FESOM, spanning the period 2020–2049 under the SSP3-7.0 scenario. The throughput was about 500 simulated days per day on the Levante supercomputer of the German Climate Computing Center (DKRZ). The simulations employed a horizontal grid of about 5 km resolution in the ocean and 10 km resolution in the atmosphere and land. Aside from this technical achievement, the simulations allowed us to gain new insights into the realism of ICON and IFS-FESOM. Beyond its time frame, nextGEMS builds the foundation of the Climate Change Adaptation Digital Twin developed in the Destination Earth initiative and paves the way for future European research on climate change.Discovering convection biases in global km-scale climate models using computer vision
Copernicus Publications (2025)
3D Cloud reconstruction through geospatially-aware Masked Autoencoders
Workshop paper at “Machine Learning and the Physical Sciences”, NeurIPS (2024)
Abstract:
Clouds play a key role in Earth's radiation balance with complex effects that introduce large uncertainties into climate models. Real-time 3D cloud data is essential for improving climate predictions. This study leverages geostationary imagery from MSG/SEVIRI and radar reflectivity measurements of cloud profiles from CloudSat/CPR to reconstruct 3D cloud structures. We first apply self-supervised learning (SSL) methods-Masked Autoencoders (MAE) and geospatially-aware SatMAE on unlabelled MSG images, and then fine-tune our models on matched image-profile pairs. Our approach outperforms state-of-the-art methods like U-Nets, and our geospatial encoding further improves prediction results, demonstrating the potential of SSL for cloud reconstruction.
Multifractal Analysis for Evaluating the Representation of Clouds in Global Kilometer-Scale Models
Geophysical Research Letters, 51 (2024)
Abstract:
Clouds are one of the largest sources of uncertainty in climate predictions. Global km-scale models need to simulate clouds and precipitation accurately to predict future climates. To isolate issues in their representation of clouds, models need to be thoroughly evaluated with observations. Here, we introduce multifractal analysis as a method for evaluating km-scale simulations. We apply it to outgoing longwave radiation fields to investigate structural differences between observed and simulated anvil clouds. We compute fractal parameters which compactly characterize the scaling behavior of clouds and can be compared across simulations and observations. We use this method to evaluate the nextGEMS ICON simulations via comparison with observations from the geostationary satellite GOES-16. We find that multifractal scaling exponents in the ICON model are significantly lower than in observations. We conclude that too much variability is contained in the small scales (<100 km) leading to less organized convection and smaller, isolated anvils.