Search for non-resonant Higgs boson pair production in final states with leptons, taus, and photons in pp collisions at s = 13 TeV with the ATLAS detector
Journal of High Energy Physics Springer 2024:8 (2024) 164
Abstract:
A search is presented for non-resonant Higgs boson pair production, targeting the bbZZ, 4V (V = W or Z), VVττ, 4τ, γγVV and γγττ decay channels. Events are categorised based on the multiplicity of light charged leptons (electrons or muons), hadronically decaying tau leptons, and photons. The search is based on a data sample of proton-proton collisions at s = 13 TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 140 fb−1. No evidence of the signal is found and the observed (expected) upper limit on the cross-section for non-resonant Higgs boson pair production is determined to be 17 (11) times the Standard Model predicted cross-section at 95% confidence level under the background-only hypothesis. The observed (expected) constraints on the HHH coupling modifier, κλ, are determined to be −6.2 < κλ< 11.6 (−4.5 < κλ< 9.6) at 95% confidence level, assuming the Standard Model for the expected limits and that new physics would only affect κλ.Combination of searches for Higgs boson decays into a photon and a massless dark photon using pp collisions at s = 13 TeV with the ATLAS detector
Journal of High Energy Physics Springer 2024:8 (2024) 153
Abstract:
A combination of searches for Higgs boson decays into a visible photon and a massless dark photon (H → γγd) is presented using 139 fb−1 of proton-proton collision data at a centre-of-mass energy of s = 13 TeV recorded by the ATLAS detector at the Large Hadron Collider. The observed (expected) 95% confidence level upper limit on the Standard Model Higgs boson decay branching ratio is determined to be B(H → γγd) < 1.3% (1.5)%. The search is also sensitive to higher-mass Higgs bosons decaying into the same final state. The observed (expected) 95% confidence level limit on the cross-section times branching ratio ranges from 16 fb (20 fb) for mH = 400 GeV to 1.0 fb (1.5 fb) for mH = 3 TeV. Results are also interpreted in the context of a minimal simplified model.Search for leptoquark pair production decaying into t e - t ¯ e + or t μ - t ¯ μ + in multi-lepton final states in pp collisions at s = 13 TeV with the ATLAS detector
The European Physical Journal C SpringerOpen 84:8 (2024) 818
Abstract:
A search for leptoquark pair production decaying into te-t¯e+ or tμ-t¯μ+ in final states with multiple leptons is presented. The search is based on a dataset of pp collisions at s=13TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb-1. Four signal regions, with the requirement of at least three light leptons (electron or muon) and at least two jets out of which at least one jet is identified as coming from a b-hadron, are considered based on the number of leptons of a given flavour. The main background processes are estimated using dedicated control regions in a simultaneous fit with the signal regions to data. No excess above the Standard Model background prediction is observed and 95% confidence level limits on the production cross section times branching ratio are derived as a function of the leptoquark mass. Under the assumption of exclusive decays into te- (tμ-), the corresponding lower limit on the scalar mixed-generation leptoquark mass mLQmixd is at 1.58 (1.59) TeV and on the vector leptoquark mass mU~1 at 1.67 (1.67) TeV in the minimal coupling scenario and at 1.95 (1.95) TeV in the Yang–Mills scenario.Search for pair-produced higgsinos decaying via Higgs or 𝒁 bosons to final states containing a pair of photons and a pair of 𝒃-jets with the ATLAS detector
Physics Letters B Elsevier 856 (2024) 138938
Abstract:
A search is presented for the pair production of higgsinos 𝜒˜ in gauge-mediated supersymmetry models, where the lightest neutralinos 𝜒˜ 0 1 decay into a light gravitino 𝐺˜ either via a Higgs ℎ or 𝑍 boson. The search is performed with the ATLAS detector at the Large Hadron Collider using 139 fb−1 of proton–proton collisions at a centre-of-mass energy of √ 𝑠 = 13 TeV. It targets final states in which a Higgs boson decays into a photon pair, while the other Higgs or 𝑍 boson decays into a 𝑏𝑏¯ pair, with missing transverse momentum associated with the two gravitinos. Search regions dependent on the amount of missing transverse momentum are defined by the requirements that the diphoton mass should be consistent with the mass of the Higgs boson, and the 𝑏𝑏¯ mass with the mass of the Higgs or 𝑍 boson. The main backgrounds are estimated with data-driven methods using the sidebands of the diphoton mass distribution. No excesses beyond Standard Model expectations are observed and higgsinos with masses up to 320 GeV are excluded, assuming a branching fraction of 100% for 𝜒˜ 0 1 → ℎ𝐺˜. This analysis excludes higgsinos with masses of 130 GeV for branching fractions to ℎ𝐺˜ as low as 36%, thus providing complementarity to previous ATLAS searches in final states with multiple leptons or multiple 𝑏-jets, targeting different decays of the electroweak bosons.Search for heavy neutral Higgs bosons decaying into a top quark pair in 140 fb − 1 of proton-proton collision data at s = 13 TeV with the ATLAS detector
Journal of High Energy Physics Springer 2024:8 (2024) 13