Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Paul Goddard

Visiting Lecturer

Sub department

  • Condensed Matter Physics
Paul.Goddard@physics.ox.ac.uk
Telephone: 01865 (2)72318
Clarendon Laboratory, room 252.1
  • About
  • Publications

Linear-in temperature resistivity from an isotropic Planckian scattering rate.

Nature 595:7869 (2021) 667-672

Authors:

Gaël Grissonnanche, Yawen Fang, Anaëlle Legros, Simon Verret, Francis Laliberté, Clément Collignon, Jianshi Zhou, David Graf, Paul A Goddard, Louis Taillefer, BJ Ramshaw

Abstract:

A variety of 'strange metals' exhibit resistivity that decreases linearly with temperature as the temperature decreases to zero1-3, in contrast to conventional metals where resistivity decreases quadratically with temperature. This linear-in-temperature resistivity has been attributed to charge carriers scattering at a rate given by ħ/τ = αkBT, where α is a constant of order unity, ħ is the Planck constant and kB is the Boltzmann constant. This simple relationship between the scattering rate and temperature is observed across a wide variety of materials, suggesting a fundamental upper limit on scattering-the 'Planckian limit'4,5-but little is known about the underlying origins of this limit. Here we report a measurement of the angle-dependent magnetoresistance of La1.6-xNd0.4SrxCuO4-a hole-doped cuprate that shows linear-in-temperature resistivity down to the lowest measured temperatures6. The angle-dependent magnetoresistance shows a well defined Fermi surface that agrees quantitatively with angle-resolved photoemission spectroscopy measurements7 and reveals a linear-in-temperature scattering rate that saturates at the Planckian limit, namely α = 1.2 ± 0.4. Remarkably, we find that this Planckian scattering rate is isotropic, that is, it is independent of direction, in contrast to expectations from 'hotspot' models8,9. Our findings suggest that linear-in-temperature resistivity in strange metals emerges from a momentum-independent inelastic scattering rate that reaches the Planckian limit.
More details from the publisher
More details
More details

Controlling Magnetic Anisotropy in a Zero-Dimensional S = 1 Magnet Using Isotropic Cation Substitution.

Journal of the American Chemical Society 143:12 (2021) 4633-4638

Authors:

Jamie L Manson, Samuel PM Curley, Robert C Williams, David Walker, Paul A Goddard, Andrew Ozarowski, Roger D Johnson, Anuradha M Vibhakar, Danielle Y Villa, Melissa L Rhodehouse, Serena M Birnbaum, John Singleton

Abstract:

The [Zn1-xNix(HF2)(pyz)2]SbF6 (x = 0.2; pyz = pyrazine) solid solution exhibits a zero-field splitting (D) that is 22% larger [D = 16.2(2) K (11.3(2) cm-1)] than that observed in the x = 1 material [D = 13.3(1) K (9.2(1) cm-1)]. The substantial change in D is accomplished by an anisotropic lattice expansion in the MN4 (M = Zn or Ni) plane, wherein the increased concentration of isotropic Zn(II) ions induces a nonlinear variation in M-F and M-N bond lengths. In this, we exploit the relative donor atom hardness, where M-F and M-N form strong ionic and weak coordinate covalent bonds, respectively, the latter being more sensitive to substitution of Ni by the slightly larger Zn(II) ion. In this way, we are able to tune the single-ion anisotropy of a magnetic lattice site by Zn-substitution on nearby sites. This effect has possible applications in the field of single-ion magnets and the design of other molecule-based magnetic systems.
More details from the publisher
More details
More details

SquidLab-A user-friendly program for background subtraction and fitting of magnetization data.

The Review of scientific instruments 91:2 (2020) 023901

Authors:

Matthew J Coak, Cheng Liu, David M Jarvis, Seunghyun Park, Matthew J Cliffe, Paul A Goddard

Abstract:

We present an open-source program free to download for academic use with a full user-friendly graphical interface for performing flexible and robust background subtraction and dipole fitting on magnetization data. For magnetic samples with small moment sizes or sample environments with large or asymmetric magnetic backgrounds, it can become necessary to separate background and sample contributions to each measured raw voltage measurement before fitting the dipole signal to extract magnetic moments. Originally designed for use with pressure cells on a Quantum Design MPMS3 SQUID magnetometer, SquidLab is a modular object-oriented platform implemented in Matlab with a range of importers for different widely available magnetometer systems (including MPMS, MPMS-XL, MPMS-IQuantum, MPMS3, and S700X models) and has been tested with a broad variety of background and signal types. The software allows background subtraction of baseline signals, signal preprocessing, and performing fits to dipole data using Levenberg-Marquardt non-linear least squares or a singular value decomposition linear algebra algorithm that excels at picking out noisy or weak dipole signals. A plugin system allows users to easily extend the built-in functionality with their own importers, processes, or fitting algorithms. SquidLab can be downloaded, under Academic License, from the University of Warwick depository (wrap.warwick.ac.uk/129665).
More details from the publisher
More details
More details

Enhancing easy-plane anisotropy in bespoke Ni(II) quantum magnets

Polyhedron Elsevier 180 (2020) 114379

Authors:

Jamie L Manson, Zachary E Manson, Ashley Sargent, Danielle Y Villa, Nicole L Etten, William JA Blackmore, Samuel PM Curley, Robert C Williams, Jamie Brambleby, Paul A Goddard, Andrew Ozarowski, Murray N Wilson, Benjamin M Huddart, Tom Lancaster, Stephen J Blundell, Roger D Johnson, Jesper Bendix, Kraig A Wheeler, Saul H Lapidus, Fan Xiao, Serena Birnbaum, John Singleton

Abstract:

We examine the crystal structures and magnetic properties of several S = 1 Ni(II) coordination compounds, molecules and polymers, that include the bridging ligands HF2−, AF62− (A = Ti, Zr) and pyrazine or non-bridging ligands F−, SiF62−, glycine, H2O, 1-vinylimidazole, 4-methylpyrazole and 3-hydroxypyridine. Pseudo-octahedral NiN4F2, NiN4O2 or NiN4OF cores consist of equatorial Ni-N bonds that are equal to or slightly longer than the axial Ni-Lax bonds. By design, the zero-field splitting (D) is large in these systems and, in the presence of substantial exchange interactions (J), can be difficult to discriminate from magnetometry measurements on powder samples. Thus, we relied on pulsed-field magnetization in those cases and employed electron-spin resonance (ESR) to confirm D when J ≪ D. The anisotropy of each compound was found to be easy-plane (D > 0) and range from ≈ 8–25 K. This work reveals a linear correlation between the ratio d(Ni-Lax)/d(Ni-Neq) and D although the ligand spectrochemical properties may play an important role. We assert that this relationship allows us to predict the type of magnetocrystalline anisotropy in tailored Ni(II) quantum magnets.
More details from the publisher
Details from ORA
More details

Unconventional field-induced spin gap in an S=1/2 Chiral staggered chain

Physical Review Letters American Physical Society 122 (2019) 057207

Authors:

Jesse Liu, S Kittaka, Roger Johnson, T Lancaster, J Singleton, T Sakakibara, Y Kohama, J Van Tol, Arzhang Ardavan, BH Williams, SJ Blundell, ZE Manson, JL Manson, PA Goddard

Abstract:

We investigate the low-temperature magnetic properties of the molecule-based chiral spin chain ½CuðpymÞðH2OÞ4SiF6 · H2O (pym ¼ pyrimidine). Electron-spin resonance, magnetometry and heat capacity measurements reveal the presence of staggered g tensors, a rich low-temperature excitation spectrum, a staggered susceptibility, and a spin gap that opens on the application of a magnetic field. These phenomena are reminiscent of those previously observed in nonchiral staggered chains, which are explicable within the sine-Gordon quantum-field theory. In the present case, however, although the sineGordon model accounts well for the form of the temperature dependence of the heat capacity, the size of the gap and its measured linear field dependence do not fit with the sine-Gordon theory as it stands. We propose that the differences arise due to additional terms in the Hamiltonian resulting from the chiral structure of ½CuðpymÞðH2OÞ4SiF6 · H2O, particularly a uniform Dzyaloshinskii-Moriya coupling and a fourfold periodic staggered field.
More details from the publisher
Details from ORA
More details
More details
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet