Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Professor Lesley Gray

Emeritus

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate dynamics
lesley.gray@retired.ox.ac.uk
Telephone: 01865 (2)72909
Atmospheric Physics Clarendon Laboratory, room 109
  • About
  • Publications

The climate response to the 11-yr solar cycle in the CMIP5 historical simulations

EGU General Assembly Conference Abstracts 16 (2014)

Authors:

Stergios Misios, Daniel Mitchell, Kleareti Tourpali, Lesley Gray, Katja Matthes

The influence of solar variability past, present and future, on North Atlantic climate.

EGU General Assembly Conference Abstracts 16 (2014)

Authors:

Nick Dunstone, Adam Scaife, Sarah Ineson, Lesley Gray, Jeff Knight, Mike Lockwood, Amanda Maycock

What do the latest reanalyses and models tell us about solar influences on climate?

EGU General Assembly Conference Abstracts 16 (2014)

Authors:

Dann Mitchell, Stergios Misios, Lesley Gray, Kleareti Tourpali, Katja Matthes

A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns

Journal of Geophysical Research Atmospheres 118:24 (2013) 13-420

Authors:

LJ Gray, AA Scaife, DM Mitchell, S Osprey, S Ineson, S Hardiman, N Butchart, J Knight, R Sutton, K Kodera

Abstract:

The surface response to 11 year solar cycle variations is investigated by analyzing the long-term mean sea level pressure and sea surface temperature observations for the period 1870-2010. The analysis reveals a statistically significant 11 year solar signal over Europe, and the North Atlantic provided that the data are lagged by a few years. The delayed signal resembles the positive phase of the North Atlantic Oscillation (NAO) following a solar maximum. The corresponding sea surface temperature response is consistent with this. A similar analysis is performed on long-term climate simulations from a coupled ocean-atmosphere version of the Hadley Centre model that has an extended upper lid so that influences of solar variability via the stratosphere are well resolved. The model reproduces the positive NAO signal over the Atlantic/European sector, but the lag of the surface response is not well reproduced. Possible mechanisms for the lagged nature of the observed response are discussed. Key Points 11-year solar signal detected over N. Atlantic/Europe Signal is evident if data are lagged by ~3 years HadGEM climate model simulates signal but not the lag ©2013. The Authors.
More details from the publisher

A practical method to identify displaced and split stratospheric polar vortex events

Geophysical Research Letters 40:19 (2013) 5268-5273

Authors:

WJM Seviour, DM Mitchell, LJ Gray

Abstract:

Extreme variability of the stratospheric polar vortex during winter can manifest as a displaced vortex event or a split vortex event. The influence of this vortex disruption can extend downwards and affect surface weather patterns. In particular, vortex splitting events have been associated with a negative Arctic Oscillation pattern. An assessment of the impacts of climate change on the polar vortex is therefore important, and more climate models now include a wella-resolved stratosphere. To aid this analysis, we introduce a practical thresholda-based method to distinguish between displaced and split vortex events. It requires only geopotential height at 10 hPa to measure the geometry of the vortex using twoa-dimensional moment diagnostics. It captures extremes of vortex variability at least, as well as previous methods when applied to reanalysis data, and has the advantage of being easily employed to analyze climate model simulations. Key Points It is important to distinguish split and displaced vortex events Current methods to do so are not easily-applicable to climate models A new method is easily-applicable and can accurately identify these events ©2013. American Geophysical Union. All Rights Reserved.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • Current page 17
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet