Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Professor Lesley Gray

Emeritus

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate dynamics
Lesley.Gray@physics.ox.ac.uk
Telephone: 01865 (2)72909
Atmospheric Physics Clarendon Laboratory, room 109
  • About
  • Publications

What do the latest reanalyses and models tell us about solar influences on climate?

EGU General Assembly Conference Abstracts 16 (2014)

Authors:

Dann Mitchell, Stergios Misios, Lesley Gray, Kleareti Tourpali, Katja Matthes

A practical method to identify displaced and split stratospheric polar vortex events

Geophysical Research Letters 40:19 (2013) 5268-5273

Authors:

WJM Seviour, DM Mitchell, LJ Gray

Abstract:

Extreme variability of the stratospheric polar vortex during winter can manifest as a displaced vortex event or a split vortex event. The influence of this vortex disruption can extend downwards and affect surface weather patterns. In particular, vortex splitting events have been associated with a negative Arctic Oscillation pattern. An assessment of the impacts of climate change on the polar vortex is therefore important, and more climate models now include a wella-resolved stratosphere. To aid this analysis, we introduce a practical thresholda-based method to distinguish between displaced and split vortex events. It requires only geopotential height at 10 hPa to measure the geometry of the vortex using twoa-dimensional moment diagnostics. It captures extremes of vortex variability at least, as well as previous methods when applied to reanalysis data, and has the advantage of being easily employed to analyze climate model simulations. Key Points It is important to distinguish split and displaced vortex events Current methods to do so are not easily-applicable to climate models A new method is easily-applicable and can accurately identify these events ©2013. American Geophysical Union. All Rights Reserved.
More details from the publisher
More details

Sensitivity of stratospheric dynamics and chemistry to QBO nudging width in the chemistry-climate model WACCM

Journal of Geophysical Research Atmospheres 118:18 (2013) 10-474

Authors:

F Hansen, K Matthes, LJ Gray

Abstract:

The consequences of different quasi-biennial oscillation (QBO) nudging widths on stratospheric dynamics and chemistry are analyzed by comparing two model simulations with the National Center for Atmospheric Research's Whole Atmosphere Community Climate Model (WACCM) where the width of the QBO is varied between 22° and 8.5° north and south. The sensitivity to the nudging width is strongest in Northern Hemisphere (NH) winter where the Holton-Tan effect in the polar stratosphere, i.e., stronger zonal mean winds during QBO west phases, is enhanced for the wider compared to the narrower nudging case. The differences between QBO west and east conditions for the two model experiments can be explained with differences in wave propagation, wave-mean flow interaction, and the residual circulation. In the wider nudging case, a divergence anomaly in the midlatitude upper stratosphere/lower mesosphere occurs together with an equatorward anomaly of the residual circulation. This seems to result in a strengthening of the meridional temperature gradient and hence a significant strengthening of the polar night jet (PNJ). In the narrower nudging case, these circulation changes are weaker and not statistically significant, consistent with a weaker and less significant impact on the PNJ. Chemical tracers like ozone, water vapor, and methane react accordingly. From a comparison of westerly minus easterly phase composite differences in the model to reanalysis and satellite data, we conclude that the standard WACCM configuration (QBO22) generates more realistic QBO effects in stratospheric dynamics and chemistry during NH winter. Our study also confirms the importance of the secondary mean meridional circulation associated with the QBO for the Holton-Tan effect. Key Points The sensitivity to QBO nudging width is strongest in NH winterHolton-Tan effect in the polar stratosphere is enhanced for the wider nudgingWave-mean flow interactions explain differences between QBO west and east ©2013. American Geophysical Union. All Rights Reserved.
More details from the publisher
More details

Revisiting the controversial issue of tropical tropospheric temperature trends

Geophysical Research Letters 40:11 (2013) 2801-2806

Authors:

DM Mitchell, PW Thorne, PA Stott, LJ Gray

Abstract:

Controversy remains over a discrepancy between modeled and observed tropical upper tropospheric temperature trends. This discrepancy is reassessed using simulations from the Coupled Climate Model Inter-comparison Project phase 5 (CMIP 5) together with radiosonde and surface observations that provide multiple realizations of possible "observed" temperatures given various methods of homogenizing the data. Over the 1979-2008 period, tropical temperature trends are not consistent with observations throughout the depth of the troposphere, and this primarily stems from a poor simulation of the surface temperature trends. This discrepancy is substantially reduced when (1) atmosphere-only simulations are examined or (2) the trends are considered as an amplification of the surface temperature trend with height. Using these approaches, it is shown that within observational uncertainty, the 5-95 percentile range of temperature trends from both coupled-ocean and atmosphere-only models are consistent with the analyzed observations at all but the upper most tropospheric level (150 hPa), and models with ultra-high horizontal resolution (≤ 0.5° × 0.5°) perform particularly well. Other than model resolution, it is hypothesized that this remaining discrepancy could be due to a poor representation of stratospheric ozone or remaining observational uncertainty. © 2013 American Geophysical Union. All Rights Reserved.
More details from the publisher
More details

Multi-model analysis of Northern Hemisphere winter blocking: Model biases and the role of resolution

Journal of Geophysical Research Atmospheres 118:10 (2013) 3956-3971

Authors:

JA Anstey, P Davini, LJ Gray, TJ Woollings, N Butchart, C Cagnazzo, B Christiansen, SC Hardiman, SM Osprey, S Yang

Abstract:

Blocking of the tropospheric jet stream during Northern Hemisphere winter (December-January-February) is examined in a multi-model ensemble of coupled atmosphere-ocean general circulation models (GCMs) obtained from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The CMIP5 models exhibit large biases in blocking frequency and related biases in tropospheric jet latitude, similar to earlier generations of GCMs. Underestimated blocking at high latitudes, especially over Europe, is common. In general, model biases decrease as model resolution increases. Increased blocking frequency at high latitudes in both the Atlantic and Pacific basins, as well as more realistic variability of Atlantic jet latitude, are associated with increased vertical resolution in the mid-troposphere to lowermost stratosphere. Finer horizontal resolution is associated with higher blocking frequency at all latitudes in the Atlantic basin but appears to have no systematic impact on blocking near Greenland or in the Pacific basin. Results from the CMIP5 analysis are corroborated by additional controlled experiments using selected GCMs. Key PointsCMIP5 models have large blocking biases and associated jet biasesIncreased spatial resolution is associated with reduced blocking and jet biasesVertical and horizontal resolution give blocking changes in different regions ©2013. American Geophysical Union. All Rights Reserved.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • Current page 17
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet