Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Insertion of STC into TRT at the Department of Physics, Oxford
Credit: CERN

Dr Patrick Green

Postdoctoral Research Assistant

Sub department

  • Particle Physics

Research groups

  • Accelerator Neutrinos
patrick.green@physics.ox.ac.uk
Telephone: 273449
Denys Wilkinson Building, room 666
  • About
  • Publications

Spatial and temporal evaluations of the liquid argon purity in ProtoDUNE-SP

Journal of Instrumentation IOP Publishing 20:09 (2025) P09008

Authors:

S Abbaslu, A Abed Abud, R Acciarri, LP Accorsi, MA Acero, MR Adames, G Adamov, M Adamowski, C Adriano, F Akbar, F Alemanno, NS Alex, K Allison, M Alrashed, A Alton, R Alvarez, T Alves, A Aman, H Amar, P Amedo, J Anderson, DA Andrade, C Andreopoulos, M Andreotti, F Azfar

Abstract:

Liquid argon time projection chambers (LArTPCs) rely on highly pure argon to ensure that ionization electrons produced by charged particles reach readout arrays. ProtoDUNE Single-Phase (ProtoDUNE-SP) was an approximately 700-ton liquid argon detector intended to prototype the Deep Underground Neutrino Experiment (DUNE) Far Detector Horizontal Drift module. It contains two drift volumes bisected by the cathode plane assembly, which is biased to create an almost uniform electric field in both volumes. The DUNE Far Detector modules must have robust cryogenic systems capable of filtering argon and supplying the TPC with clean liquid. This paper will explore comparisons of the argon purity measured by the purity monitors with those measured using muons in the TPC from October 2018 to November 2018. A new method is introduced to measure the liquid argon purity in the TPC using muons crossing both drift volumes of ProtoDUNE-SP. For extended periods on the timescale of weeks, the drift electron lifetime was measured to be above 30 ms using both systems. A particular focus will be placed on the measured purity of argon as a function of position in the detector.
More details from the publisher
Details from ORA

Search for an Anomalous Production of Charged-Current νe Interactions without Visible Pions across Multiple Kinematic Observables in MicroBooNE

Physical Review Letters American Physical Society (APS) 135:8 (2025) 081802

Authors:

P Abratenko, D Andrade Aldana, L Arellano, J Asaadi, A Ashkenazi, S Balasubramanian, B Baller, A Barnard, G Barr, D Barrow, J Barrow, V Basque, J Bateman, O Benevides Rodrigues, S Berkman, A Bhat, M Bhattacharya, M Bishai, A Blake, B Bogart, T Bolton, MB Brunetti, L Camilleri, D Caratelli, F Cavanna, G Cerati, A Chappell, Y Chen, JM Conrad, M Convery, L Cooper-Troendle, JI Crespo-Anadón, R Cross, M Del Tutto, SR Dennis, P Detje, R Diurba, Z Djurcic, K Duffy, S Dytman, B Eberly, P Englezos, A Ereditato, JJ Evans, C Fang, W Foreman, BT Fleming, D Franco, AP Furmanski, F Gao, D Garcia-Gamez, S Gardiner, G Ge, S Gollapinni, E Gramellini, P Green, H Greenlee, L Gu, W Gu, R Guenette, P Guzowski, L Hagaman, MD Handley, O Hen, C Hilgenberg, GA Horton-Smith, A Hussain, B Irwin, MS Ismail, C James, X Ji, JH Jo, RA Johnson, Y-J Jwa, D Kalra, G Karagiorgi, W Ketchum, M Kirby, T Kobilarcik, N Lane, J-Y Li, Y Li, K Lin, BR Littlejohn, L Liu, WC Louis, X Luo, T Mahmud, C Mariani, D Marsden, J Marshall, N Martinez, DA Martinez Caicedo, S Martynenko, A Mastbaum, I Mawby, N McConkey, L Mellet, J Mendez, J Micallef, A Mogan, T Mohayai, M Mooney, AF Moor, CD Moore, L Mora Lepin, MM Moudgalya, S Mulleriababu, D Naples, A Navrer-Agasson, N Nayak, M Nebot-Guinot, C Nguyen, J Nowak, N Oza, O Palamara, N Pallat, V Paolone, A Papadopoulou, V Papavassiliou, HB Parkinson, SF Pate, N Patel, Z Pavlovic, E Piasetzky, K Pletcher, I Pophale, X Qian, JL Raaf, V Radeka, A Rafique, M Reggiani-Guzzo, J Rodriguez Rondon, M Rosenberg, M Ross-Lonergan, I Safa, DW Schmitz, A Schukraft, W Seligman, MH Shaevitz, R Sharankova, J Shi, EL Snider, M Soderberg, S Söldner-Rembold, J Spitz, M Stancari, J St. John, T Strauss, AM Szelc, N Taniuchi, K Terao, C Thorpe, D Torbunov, D Totani, M Toups, A Trettin, Y-T Tsai, J Tyler, MA Uchida, T Usher, B Viren, J Wang, M Weber, H Wei, AJ White, S Wolbers, T Wongjirad, M Wospakrik, K Wresilo, W Wu, E Yandel, T Yang, LE Yates, HW Yu, GP Zeller, J Zennamo, C Zhang

Abstract:

This Letter presents an investigation of low-energy electron-neutrino interactions in the Fermilab Booster Neutrino Beam by the MicroBooNE experiment, motivated by the excess of electron-neutrino-like events observed by the MiniBooNE experiment. This is the first measurement to use data from all five years of operation of the MicroBooNE experiment, corresponding to an exposure of 1.11 × 10 21 protons on target, a 70% increase on past results. Two samples of electron neutrino interactions without visible pions are used, one with visible protons and one without any visible protons. The MicroBooNE data show reasonable agreement with the nominal prediction, with p values ≥ 26.7 % when the two ν e samples are combined, though the prediction exceeds the data in limited regions of phase space. The data are further compared to two empirical models that modify the predicted rate of electron-neutrino interactions in different variables in the simulation to match the unfolded MiniBooNE low energy excess. In the first model, this unfolding is performed as a function of electron neutrino energy, while the second model aims to match the observed shower energy and angle distributions of the MiniBooNE excess. This measurement excludes an electronlike interpretation of the MiniBooNE excess based on these models at > 99 % CL s in all kinematic variables.
More details from the publisher
More details

First Measurement of νe and ν¯e Charged-Current Single Charged-Pion Production Differential Cross Sections on Argon Using the MicroBooNE Detector

Physical Review Letters American Physical Society (APS) 135:6 (2025) 61802

Authors:

P Abratenko, D Andrade Aldana, L Arellano, J Asaadi, A Ashkenazi, S Balasubramanian, B Baller, A Barnard, G Barr, D Barrow, J Barrow, V Basque, J Bateman, O Benevides Rodrigues, S Berkman, A Bhat, M Bhattacharya, M Bishai, A Blake, B Bogart, T Bolton, Mb Brunetti, L Camilleri, D Caratelli, F Cavanna, G Cerati, A Chappell, Y Chen, Jm Conrad, M Convery, L Cooper-Troendle, Ji Crespo-Anadón, R Cross, M Del Tutto, Sr Dennis, P Detje, R Diurba, Z Djurcic, K Duffy, S Dytman, B Eberly, P Englezos, A Ereditato, Jj Evans, C Fang, W Foreman, Bt Fleming, D Franco, Ap Furmanski, F Gao

Abstract:

<jats:p>Understanding electron neutrino interactions is crucial for measurements of neutrino oscillations and searches for new physics in neutrino experiments. We present the first measurement of the flux-averaged <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline"><a:mrow><a:msub><a:mrow><a:mi>ν</a:mi></a:mrow><a:mrow><a:mi>e</a:mi></a:mrow></a:msub><a:mo>+</a:mo><a:msub><a:mrow><a:mover accent="true"><a:mrow><a:mi>ν</a:mi></a:mrow><a:mrow><a:mo stretchy="false">¯</a:mo></a:mrow></a:mover></a:mrow><a:mrow><a:mi>e</a:mi></a:mrow></a:msub></a:mrow></a:math> charged-current single charged-pion production cross section on argon using the MicroBooNE detector and data from the NuMI neutrino beam. The total cross section is measured to be <e:math xmlns:e="http://www.w3.org/1998/Math/MathML" display="inline"><e:mrow><e:mo stretchy="false">[</e:mo><e:mn>0.93</e:mn><e:mo>±</e:mo><e:mn>0.13</e:mn><e:mo stretchy="false">(</e:mo><e:mi>stat</e:mi><e:mo stretchy="false">)</e:mo><e:mo>±</e:mo><e:mn>0.27</e:mn><e:mo stretchy="false">(</e:mo><e:mi>syst</e:mi><e:mo stretchy="false">)</e:mo><e:mo stretchy="false">]</e:mo><e:mo>×</e:mo><e:msup><e:mrow><e:mn>10</e:mn></e:mrow><e:mrow><e:mo>−</e:mo><e:mn>39</e:mn></e:mrow></e:msup><e:mtext> </e:mtext><e:mtext> </e:mtext><e:msup><e:mrow><e:mi>cm</e:mi></e:mrow><e:mrow><e:mn>2</e:mn></e:mrow></e:msup><e:mo>/</e:mo><e:mi>nucleon</e:mi></e:mrow></e:math> at a mean <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" display="inline"><m:mrow><m:msub><m:mrow><m:mi>ν</m:mi></m:mrow><m:mrow><m:mi>e</m:mi></m:mrow></m:msub><m:mo>+</m:mo><m:msub><m:mrow><m:mover accent="true"><m:mrow><m:mi>ν</m:mi></m:mrow><m:mrow><m:mo stretchy="false">¯</m:mo></m:mrow></m:mover></m:mrow><m:mrow><m:mi>e</m:mi></m:mrow></m:msub></m:mrow></m:math> energy of 730 MeV. Differential cross sections are also reported in electron energy, electron and pion angles, and electron-pion opening angle.</jats:p>
More details from the publisher
More details

Neutrino interaction vertex reconstruction in DUNE with Pandora deep learning

The European Physical Journal C SpringerOpen 85:6 (2025) 697

Authors:

A Abed Abud, R Acciarri, MA Acero, MR Adames, G Adamov, M Adamowski, D Adams, M Adinolfi, C Adriano, A Aduszkiewicz, J Aguilar, F Akbar, F Alemanno, NS Alex, K Allison, M Alrashed, A Alton, R Alvarez, T Alves, A Aman, H Amar, P Amedo, J Anderson, C Andreopoulos, F Azfar

Abstract:

The Pandora Software Development Kit and algorithm libraries perform reconstruction of neutrino interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at the Deep Underground Neutrino Experiment, which will operate four large-scale liquid argon time projection chambers at the far detector site in South Dakota, producing high-resolution images of charged particles emerging from neutrino interactions. While these high-resolution images provide excellent opportunities for physics, the complex topologies require sophisticated pattern recognition capabilities to interpret signals from the detectors as physically meaningful objects that form the inputs to physics analyses. A critical component is the identification of the neutrino interaction vertex. Subsequent reconstruction algorithms use this location to identify the individual primary particles and ensure they each result in a separate reconstructed particle. A new vertex-finding procedure described in this article integrates a U-ResNet neural network performing hit-level classification into the multi-algorithm approach used by Pandora to identify the neutrino interaction vertex. The machine learning solution is seamlessly integrated into a chain of pattern-recognition algorithms. The technique substantially outperforms the previous BDT-based solution, with a more than 20% increase in the efficiency of sub-1 cm vertex reconstruction across all neutrino flavours.
More details from the publisher
Details from ORA
More details

First study of neutrino angle reconstruction using quasielasticlike interactions in MicroBooNE

Physical Review D American Physical Society (APS) 111:11 (2025) 113007

Authors:

P Abratenko, D Andrade Aldana, L Arellano, J Asaadi, A Ashkenazi, S Balasubramanian, B Baller, A Barnard, G Barr, D Barrow, J Barrow, V Basque, J Bateman, O Benevides Rodrigues, S Berkman, A Bhat, M Bhattacharya, M Bishai, A Blake, B Bogart, T Bolton, MB Brunetti, L Camilleri, D Caratelli, F Cavanna, G Cerati, A Chappell, Y Chen, JM Conrad, M Convery, L Cooper-Troendle, JI Crespo-Anadón, R Cross, M Del Tutto, SR Dennis, P Detje, R Diurba, Z Djurcic, K Duffy, S Dytman, B Eberly, P Englezos, A Ereditato, JJ Evans, C Fang, W Foreman, BT Fleming, D Franco, AP Furmanski, F Gao, D Garcia-Gamez, S Gardiner, G Ge, S Gollapinni, E Gramellini, P Green, H Greenlee, L Gu, W Gu, R Guenette, P Guzowski, L Hagaman, MD Handley, O Hen, C Hilgenberg, GA Horton-Smith, A Hussain, B Irwin, MS Ismail, C James, X Ji, JH Jo, RA Johnson, D Kalra, G Karagiorgi, W Ketchum, M Kirby, T Kobilarcik, N Lane, J-Y Li, Y Li, K Lin, BR Littlejohn, L Liu, WC Louis, X Luo, P Machado, T Mahmud, C Mariani, J Marshall, N Martinez, DA Martinez Caicedo, S Martynenko, A Mastbaum, I Mawby, N McConkey, L Mellet, J Mendez, J Micallef, A Mogan, T Mohayai, M Mooney, AF Moor, CD Moore, L Mora Lepin, MM Moudgalya, S Mulleriababu, D Naples, A Navrer-Agasson, N Nayak, M Nebot-Guinot, C Nguyen, J Nowak, N Oza, O Palamara, N Pallat, V Paolone, A Papadopoulou, V Papavassiliou, HB Parkinson, SF Pate, N Patel, Z Pavlovic, E Piasetzky, K Pletcher, I Pophale, X Qian, JL Raaf, V Radeka, A Rafique, M Reggiani-Guzzo, J Rodriguez Rondon, M Rosenberg, M Ross-Lonergan, I Safa, DW Schmitz, A Schukraft, W Seligman, MH Shaevitz, R Sharankova, J Shi, EL Snider, S Söldner-Rembold, J Spitz, M Stancari, J St. John, T Strauss, AM Szelc, N Taniuchi, K Terao, C Thorpe, D Torbunov, D Totani, M Toups, A Trettin, Y-T Tsai, J Tyler, MA Uchida, T Usher, B Viren, J Wang, M Weber, H Wei, AJ White, S Wolbers, T Wongjirad, K Wresilo, W Wu, E Yandel, T Yang, LE Yates, HW Yu, GP Zeller, J Zennamo, C Zhang

Abstract:

We investigate the expected precision of the reconstructed neutrino direction using a ν μ -argon quasielasticlike event topology with one muon and one proton in the final state and the reconstruction capabilities of the MicroBooNE liquid argon time projection chamber. This direction is of importance in the context of DUNE sub-GeV atmospheric oscillation studies. MicroBooNE allows for a data-driven quantification of this resolution by investigating the deviation of the reconstructed muon-proton system orientation with respect to the well-known direction of neutrinos originating from the Booster Neutrino Beam with an exposure of 1.3 × 10 21 protons on target. Using simulation studies, we derive the expected sub-GeV DUNE atmospheric-neutrino reconstructed simulated spectrum by developing a reweighting scheme as a function of the true neutrino energy. We further report flux-integrated single- and double-differential cross section measurements of charged-current ν μ quasielasticlike scattering on argon as a function of the muon-proton system angle using the full MicroBooNE data sets. We also demonstrate the sensitivity of these results to nuclear effects and final state hadronic reinteraction modeling. Published by the American Physical Society 2025
More details from the publisher
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet