Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Dr Edward Groot

Postdoctoral Research Assistant

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Atmospheric processes
  • Predictability of weather and climate
Atmospheric Physics Clarendon Laboratory
  • About
  • Teaching
  • Publications

Probabilistic thunderstorm forecasts using statistical post-processing: Comparison of logistic regression and quantile regression forests and an investigation of physical predictors

Technical report published by KNMI and University of Utrecht

Authors:

Edward Groot
Advisors: Maurice Schmeits, Kirien Whan, Willem-Jan van de Berg

Abstract:

Probabilities of thunderstorm occurrence and conditional probabilities of lightning intensity over The Netherlands are forecast using statistical post-processing with predictors derived from the operational non-hydrostatic numerical weather prediction model Harmonie, at lead times up to 45 hours. Quantile regression forests (QRF) is compared with logistic regression (LR) for thunderstorm occurrence forecasts and with extended LR for lightning intensity forecasts. Using different sets of predictors that these statistical methods may select, it is demonstrated that pre-selection of predictors based on physical understanding and simultaneously exploiting QRF as machine learning tool can help improving statistical post-processing models. QRF is demonstrated to be beneficial for the predictions, with more skillful forecasts than LR for thunderstorm occurrence. Lightning intensity predictions are influenced by inhomogeneity of lightning detection datasets; despite inhomogeneity, skillful predictions can be made with both extended LR and QRF. The regional maximum of Modified Jefferson index and most unstable CAPE are found as best thunderstorm occurrence predictors and the regional minimum of Bradbury index and maximum of K-index emerge as best for lightning intensity. Neither most unstable CAPE nor microphysical predictors (graupel, snow) are essential for thunderstorm occurrence prediction.

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet