Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Insertion of STC into TRT at the Department of Physics, Oxford
Credit: CERN

Professor Claire Gwenlan

Professor of Physics

Research theme

  • Fundamental particles and interactions

Sub department

  • Particle Physics

Research groups

  • ATLAS
  • ePIC
claire.gwenlan@physics.ox.ac.uk
Telephone: 01865 (2)73384
Denys Wilkinson Building, room 606
  • About
  • Publications

Precise measurements of W - and Z -boson transverse momentum spectra with the ATLAS detector using pp collisions at s = 5.02 TeV and 13 TeV

The European Physical Journal C SpringerOpen 84:10 (2024) 1126

Authors:

G Aad, B Abbott, K Abeling, NJ Abicht, SH Abidi, A Aboulhorma, H Abramowicz, H Abreu, Y Abulaiti, BS Acharya, C Adam Bourdarios, L Adamczyk, L Adamek, SV Addepalli, MJ Addison, J Adelman, A Adiguzel, T Adye, AA Affolder, Y Afik, MN Agaras, J Agarwala, A Aggarwal, C Agheorghiesei

Abstract:

This paper describes measurements of the transverse momentum spectra of W and Z bosons produced in proton–proton collisions at centre-of-mass energies of s=5.02 TeV and s=13 TeV with the ATLAS experiment at the Large Hadron Collider. Measurements are performed in the electron and muon channels, W→ℓν and Z→ℓℓ (ℓ=e or μ), and for W events further separated by charge. The data were collected in 2017 and 2018, in dedicated runs with reduced instantaneous luminosity, and correspond to 255 and 338 pb-1 at s=5.02 TeV and 13 TeV, respectively. These conditions optimise the reconstruction of the W-boson transverse momentum. The distributions observed in the electron and muon channels are unfolded, combined, and compared to QCD calculations based on parton shower Monte Carlo event generators and analytical resummation. The description of the transverse momentum distributions by Monte Carlo event generators is imperfect and shows significant differences largely common to W-, W+ and Z production. The agreement is better at s=5.02 TeV, especially for predictions that were tuned to Z production data at s=7 TeV. Higher-order, resummed predictions based on DYTurbo generally match the data best across the spectra. Distribution ratios are also presented and test the understanding of differences between the production processes.
More details from the publisher
Details from ORA
More details

Constraints on simplified dark matter models involving an s -channel mediator with the ATLAS detector in pp collisions at s = 13 TeV

The European Physical Journal C SpringerOpen 84:10 (2024) 1102

Authors:

G Aad, E Aakvaag, B Abbott, S Abdelhameed, K Abeling, NJ Abicht, SH Abidi, M Aboelela, A Aboulhorma, H Abramowicz, H Abreu, Y Abulaiti, BS Acharya, A Ackermann, C Adam Bourdarios, L Adamczyk, SV Addepalli, MJ Addison, J Adelman, A Adiguzel, T Adye, AA Affolder, Y Afik, MN Agaras

Abstract:

This paper reports a summary of searches for a fermionic dark matter candidate in the context of theoretical models characterised by a mediator particle exchange in the s-channel. The data sample considered consists of pp collisions delivered by the Large Hadron Collider during its Run 2 at a centre-of-mass energy of s=13TeV and recorded by the ATLAS detector, corresponding to up to 140 fb-1. The interpretations of the results are based on simplified models where the new mediator particles can be spin-0, with scalar or pseudo-scalar couplings to fermions, or spin-1, with vector or axial-vector couplings to fermions. Exclusion limits are obtained from various searches characterised by final states with resonant production of Standard Model particles, or production of Standard Model particles in association with large missing transverse momentum.
More details from the publisher
Details from ORA
More details

Search for heavy resonances in final states with four leptons and missing transverse momentum or jets in pp collisions at s = 13 TeV with the ATLAS detector

Journal of High Energy Physics Springer 2024:10 (2024) 130

Authors:

G Aad, E Aakvaag, B Abbott, K Abeling, NJ Abicht, SH Abidi, A Aboulhorma, H Abramowicz, H Abreu, Y Abulaiti, BS Acharya, C Adam Bourdarios, L Adamczyk, SV Addepalli, MJ Addison, J Adelman, A Adiguzel, T Adye, AA Affolder, Y Afik, MN Agaras, J Agarwala, A Aggarwal, C Agheorghiesei

Abstract:

A search for a new heavy boson produced via gluon-fusion in the four-lepton channel with missing transverse momentum or jets is performed. The search uses proton-proton collision data equivalent to an integrated luminosity of 139 fb−1 at a centre-of-mass energy of 13 TeV collected by the ATLAS detector between 2015 and 2018 at the Large Hadron Collider. This study explores the decays of heavy bosons: R → SH and A → ZH, where R is a CP-even boson, A is a CP-odd boson, H is a CP-even boson, and S is considered to decay into invisible particles that are candidates for dark matter. In these processes, S → invisible and H → ZZ. The Z boson associated with the heavy scalar boson H decays into all decay channels of the Z boson. The mass range under consideration is 390–1300 (320–1300) GeV for the R (A) boson and 220–1000 GeV for the H boson. No significant deviation from the Standard Model backgrounds is observed. The results are interpreted as upper limits at a 95% confidence level on the cross-section times the branching ratio of the heavy resonances.
More details from the publisher
Details from ORA
More details

Fiducial and differential cross-section measurements of electroweak Wγjj production in pp collisions at s=13 TeV with the ATLAS detector

European Physical Journal C Springer Nature 84:10 (2024) 1064
More details from the publisher
More details

Search for a resonance decaying into a scalar particle and a Higgs boson in final states with leptons and two photons in proton-proton collisions at s = 13 TeV with the ATLAS detector

Journal of High Energy Physics Springer 2024:10 (2024) 104

Authors:

G Aad, E Aakvaag, B Abbott, S Abdelhameed, K Abeling, NJ Abicht, SH Abidi, M Aboelela, A Aboulhorma, H Abramowicz, H Abreu, Y Abulaiti, BS Acharya, A Ackermann, C Adam Bourdarios, L Adamczyk, SV Addepalli, MJ Addison, J Adelman, A Adiguzel, T Adye, AA Affolder, Y Afik, MN Agaras

Abstract:

A search for a hypothetical heavy scalar particle, X, decaying into a singlet scalar particle, S, and a Standard Model Higgs boson, H, using 140 fb−1 of proton-proton collision data at the centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the LHC is presented. The explored mass range is 300 ≤ mX ≤ 1000 GeV and 170 ≤ mS ≤ 500 GeV. The signature of this search is one or two leptons (e or μ) from the decay of vector bosons originating from the S particle, S → W±W∓/ZZ, and two photons from the Higgs boson decay, H → γγ. No significant excess is observed above the expected Standard Model background. The observed (expected) upper limits at the 95% confidence level on the cross- section for gg → X → SH, assuming the same S → WW/ZZ branching ratios as for a SM-like heavy Higgs boson, are between 530 (800) fb and 120 (170) fb.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • Current page 11
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet