Measurements of observables sensitive to colour reconnection in 𝑡𝑡¯ events with the ATLAS detector at √𝑠 = 13 TeV
The European Physical Journal C Springer 83:6 (2023) 518
Abstract:
A measurement of observables sensitive to effects of colour reconnection in top-quark pair-production events is presented using 139 fb−1 of 13 TeV proton–proton collision data collected by the ATLAS detector at the LHC. Events are selected by requiring exactly one isolated electron and one isolated muon with opposite charge and two or three jets, where exactly two jets are required to be b-tagged. For the selected events, measurements are presented for the charged-particle multiplicity, the scalar sum of the transverse momenta of the charged particles, and the same scalar sum in bins of charged-particle multiplicity. These observables are unfolded to the stable-particle level, thereby correcting for migration effects due to finite detector resolution, acceptance and efficiency effects. The particle-level measurements are compared with different colour reconnection models in Monte Carlo generators. These measurements disfavour some of the colour reconnection models and provide inputs to future optimisation of the parameters in Monte Carlo generators.Constraints on the Higgs boson self-coupling from single- and double-Higgs production with the ATLAS detector using pp collisions at √s=13 TeV
Physics Letters B Elsevier 843 (2023) 137745
Abstract:
Constraints on the Higgs boson self-coupling are set by combining double-Higgs boson analyses in the bb̅bb̅, bb̅τ+τ− and bb̅γγ decay channels with single-Higgs boson analyses targeting the γγ, ZZ∗, WW∗, τ+τ− and bb̅ decay channels. The data used in these analyses were recorded by the ATLAS detector at the LHC in proton–proton collisions at √s = 13 TeV and correspond to an integrated luminosity of 126–139 fb−1. The combination of the double-Higgs analyses sets an upper limit of μHH <2.4 at 95% confidence level on the double-Higgs production cross-section normalised to its Standard Model prediction. Combining the single-Higgs and double-Higgs analyses, with the assumption that new physics affects only the Higgs boson self-coupling (λHHH ), values outside the interval −0.4 < κλ = (λHHH /λSMHHH) < 6.3 are excluded at 95% confidence level. The combined single-Higgs and double-Higgs analyses provide results with fewer assumptions, by adding in the fit more coupling modifiers introduced to account for the Higgs boson interactions with the other Standard Model particles. In this relaxed scenario, the constraint becomes −1.4 < κλ < 6.1 at 95% CL.Search for resonant pair production of Higgs bosons in the bb¯bb¯ final state using pp collisions at s√ = 13 TeV with the ATLAS detector
Physical Review D: Particles, Fields, Gravitation and Cosmology American Physical Society 105 (2022) 092002
Abstract:
A search for resonant Higgs boson pair production in the 𝑏 ¯𝑏𝑏 ¯𝑏 final state is presented. The analysis uses 126–139 fb−1 of 𝑝𝑝 collision data at √𝑠 = 13 TeV collected with the ATLAS detector at the Large Hadron Collider. The analysis is divided into two channels, targeting Higgs boson decays which are reconstructed as pairs of small-radius jets or as individual large-radius jets. Spin-0 and spin-2 benchmark signal models are considered, both of which correspond to resonant 𝐻𝐻 production via gluon–gluon fusion. The data are consistent with Standard Model predictions. Upper limits are set on the production cross-section times branching ratio to Higgs boson pairs of a new resonance in the mass range from 251 GeV to 5 TeV.ATLAS b-jet identification performance and efficiency measurement with tt¯ events in pp collisions at s√=13 TeV
European Physical Journal C: Particles and Fields Springer 79:11 (2019) 970
Abstract:
The algorithms used by the ATLAS Collaboration during Run 2 of the Large Hadron Collider to identify jets containing b-hadrons are presented. The performance of the algorithms is evaluated in the simulation and the efficiency with which these algorithms identify jets containing b-hadrons is measured in collision data. The measurement uses a likelihood-based method in a sample highly enriched in tt¯ events. The topology of the t→Wb decays is exploited to simultaneously measure both the jet flavour composition of the sample and the efficiency in a transverse momentum range from 20 to 600 GeV. The efficiency measurement is subsequently compared with that predicted by the simulation. The data used in this measurement, corresponding to a total integrated luminosity of 80.5 fb−1, were collected in proton–proton collisions during the years 2015–2017 at a centre-of-mass energy s√= 13 TeV. By simultaneously extracting both the efficiency and jet flavour composition, this measurement significantly improves the precision compared to previous results, with uncertainties ranging from 1 to 8% depending on the jet transverse momentum.Search for Higgs boson pair production in the b¯bWW∗ decay mode at √s = 13 TeV with the ATLAS detector
Journal of High Energy Physics Springer Berlin Heidelberg 2019:4 (2019) 92