Implications of the cosmic background imager polarization data
Astrophysical Journal 660:2 I (2007) 976-987
Abstract:
We present new measurements of the power spectra of the E mode of cosmic microwave background (CMB) polarization, the temperature T, the cross-correlation of E and T, and upper limits on the B mode from 2.5 yr of dedicated Cosmic Background Imager (CBI) observations. Both raw maps and optimal signal images in the (u, v)-plane and the sky plane show strong detections of the E mode (11.7 σ for the EE power spectrum overall) and no detection of the B mode. The power spectra are used to constrain parameters of the flat tilted adiabatic ACDM models: those determined from EE and TE bandpowers agree with those from TT, which is a powerful consistency check. There is little tolerance for shifting polarization peaks from the TT-forecast locations, as measured by the angular sound crossing scale 0 = 100/ls= 1.03 ± 0.02 from EE and TE; compare with 1.044 ± 0.005 with the TT data included. The scope for extra out-of-phase peaks from subdominant isocurvature modes is also curtailed. The EE and TE measurements of CBI, DASI, and BOOMERANG are mutually consistent and, taken together rather than singly, give enced leverage for these tests. © 2007. The American Astronomical Society. All rights reserved.Implications of the Cosmic Background Imager Polarization Data
Astrophys.J. 660 (2007) 976-987
Abstract:
We present new measurements of the power spectra of the E-mode of CMB polarization, the temperature T, the cross-correlation of E and T, and upper limits on the B-mode from 2.5 years of dedicated Cosmic Background Imager (CBI) observations. Both raw maps and optimal signal images in the uv-plane and real space show strong detections of the E-mode (11.7 sigma for the EE power spectrum overall) and no detection of the B-mode. The power spectra are used to constrain parameters of the flat tilted adiabatic Lambda-CDM models: those determined from EE and TE bandpowers agree with those from TT, a powerful consistency check. There is little tolerance for shifting polarization peaks from the TT-forecast locations, as measured by the angular sound crossing scale theta = 100 ell_s = 1.03 +/- 0.02 from EE and TE cf. 1.044 +/- 0.005 with the TT data included. The scope for extra out-of-phase peaks from subdominant isocurvature modes is also curtailed. The EE and TE measurements of CBI, DASI and BOOMERANG are mutually consistent, and, taken together rather than singly, give enhanced leverage for these tests.Implications of the Cosmic Background Imager Polarization Data
\apj 660 (2007) 976-987
A 6-12 GHz analogue lag-correlator for radio interferometry
Astronomy and Astrophysics 464:2 (2007) 795
Abstract:
Aims. We describe a 6-12 GHz analogue correlator that has been developed for use in radio interferometers. Methods. We use a lag-correlator technique to synthesis eight complex spectral channels. Two schemes were considered for sampling the cross-correlation function, using either real or complex correlations, and we developed prototypes for both of them. We opted for the "add and square" detection scheme using Schottky diodes over the more commonly used active multipliers because the stability of the device is less critical. Results. We encountered an unexpected problem, in that there were errors in the lag spacings of up to ten percent of the unit spacing. To overcome this, we developed a calibration method using astronomical sources which corrects the effects of the non-uniform sampling as well as gain error and dispersion in the correlator. © ESO 2007.High-significance Sunyaev–Zel'dovich measurement: Abell 1914 seen with the Arcminute Microkelvin Imager⋆
Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press (OUP) 369:1 (2006) l1-l4