Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof Michael Jones

Professor of Experimental Cosmology

Sub department

  • Astrophysics

Research groups

  • Astronomical instrumentation
  • Cosmology
  • Experimental radio cosmology
  • C-BASS
  • The Square Kilometre Array (SKA)
Mike.Jones@physics.ox.ac.uk
Telephone: 01865 (2)73441
Denys Wilkinson Building, room 758
  • About
  • Publications

The C-Band All-Sky Survey (C-BASS): design and implementation of the northern receiver

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 438:3 (2014) 2426-2439

Authors:

OG King, Michael E Jones, EJ Blackhurst, C Copley, RJ Davis, C Dickinson, CM Holler, MO Irfan, JJ John, JP Leahy, J Leech, SJC Muchovej, TJ Pearson, MA Stevenson, Angela C Taylor
More details from the publisher
More details
Details from ArXiV

SKA synergy with microwave background studies

Chapter in , 9-13-June-2014 (2014)

Authors:

C Burigana, P Alexander, C Baccigalupi, D Barbosa, A Blanchard, AD Rosa, G De Zotti, F Finelli, A Gruppuso, M Jones, S Matarrese, A Melchiorri, D Molinari, M Negrello, D Paoletti, F Perrotta, R Scaramella, T Trombetti

Abstract:

The extremely high sensitivity and resolution of the Square Kilometre Array (SKA) will be useful for addressing a wide set of themes relevant for cosmology, in synergy with current and future cosmic microwave background (CMB) projects. Many of these themes also have a link with future optical-IR and X-ray observations. We discuss the scientific perspectives for these goals, the instrumental requirements and the observational and data analysis approaches, and identify several topics that are important for cosmology and astrophysics at different cosmic epochs.

The cosmic dawn and epoch of reionization with the square kilometre array

Proceedings of Science 9-13-June-2014 (2014)

Authors:

LVE Koopmans, J Pritchard, G Mellema, F Abdalla, J Aguirre, K Ahn, R Barkana, I Van Bemmel, G Bernardi, A Bonaldi, F Briggs, AG De Bruyn, TC Chang, E Chapman, X Chen, B Ciardi, KK Datta, P Dayal, A Ferrara, A Fialkov, F Fiore, K Ichiki, IT Illiev, S Inoue, V Jelić, M Jones, J Lazio, U Maio, S Majumdar, KJ Mack, A Mesinger, MF Morales, A Parsons, UL Pen, M Santos, R Schneider, B Semelin, RS De Souza, R Subrahmanyan, T Takeuchi, C Trott, H Vedantham, J Wagg, R Webster, S Wyithe

Abstract:

Concerted effort is currently ongoing to open up the Epoch of Reionization (z ∼15-6) for studies with IR and radio telescopes. Whereas IR detections have been made of sources (Lyman-a emitters, quasars and drop-outs) in this redshift regime in relatively small fields of view, no direct detection of neutral hydrogen, via the redshifted 21-cm line, has yet been established. Such a direct detection is expected in the coming years, with ongoing surveys, and could open up the entire universe from z ∼6-200 for astrophysical and cosmological studies, opening not only the Epoch of Reionization, but also its preceding Cosmic Dawn (z ∼30-15) and possibly even the later phases of the Dark Ages (z ∼200-30). All currently ongoing experiments attempt statistical detections of the 21-cm signal during the Epoch of Reionization, with limited signal-to-noise. Direct imaging, except maybe on the largest (degree) scales at lower redshifts, as well as higher redshifts will remain out of reach. The Square Kilometre Array (SKA) will revolutionize the field, allowing direct imaging of neutral hydrogen from scales of arc-minutes to degrees over most of the redshift range z ∼6-28 with SKA1-LOW, and possibly even higher redshifts with the SKA2-LOW. In this SKA will be unique, and in parallel provide enormous potential of synergy with other upcoming facilities (e.g. JWST). In this chapter we summarize the physics of 21-cm emission, the different phases the universe is thought to go through, and the observables that the SKA can probe, referring where needed to detailed chapters in this volume. This is done within the framework of the current SKA1 baseline design and a nominal CD/EoR straw-man survey, consisting of a shallow, medium-deep and deep survey, the latter probing down to ∼1mK brightness temperature on arc-minute scales at the end of reionization. Possible minor modifications to the design of SKA1 and the upgrade to SKA2 are discussed, in addition to science that could be done already during roll-out when SKA1 still has limited capabilities and/or core collecting area.

Increased SKA-Low Science Capability through Extended Frequency Coverage

SKA Organisation (2013) 149

Authors:

DC Price, D Sinclair, J Hickish, ME Jones

Optimal partitioning of SKA-Low Antenna Elements

SKA Orgainisation (2013) 150

Authors:

DC Price, J Hickish, D Sinclair, ME Jones

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Current page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet