Characterization of a dense aperture array for radio astronomy
Astronomy & Astrophysics EDP Sciences 589 (2016) a77
A large light-mass component of cosmic rays at 10(17)-10(17.5) electronvolts from radio observations
Nature Springer Nature (2016)
Abstract:
Cosmic rays are the highest-energy particles found in nature. Measurements of the mass composition of cosmic rays with energies of 10(17)-10(18) electronvolts are essential to understanding whether they have galactic or extragalactic sources. It has also been proposed that the astrophysical neutrino signal comes from accelerators capable of producing cosmic rays of these energies. Cosmic rays initiate air showers--cascades of secondary particles in the atmosphere-and their masses can be inferred from measurements of the atmospheric depth of the shower maximum (Xmax; the depth of the air shower when it contains the most particles) or of the composition of shower particles reaching the ground. Current measurements have either high uncertainty, or a low duty cycle and a high energy threshold. Radio detection of cosmic rays is a rapidly developing technique for determining Xmax (refs 10, 11) with a duty cycle of, in principle, nearly 100 per cent. The radiation is generated by the separation of relativistic electrons and positrons in the geomagnetic field and a negative charge excess in the shower front. Here we report radio measurements of Xmax with a mean uncertainty of 16 grams per square centimetre for air showers initiated by cosmic rays with energies of 10(17)-10(17.5) electronvolts. This high resolution in Xmax enables us to determine the mass spectrum of the cosmic rays: we find a mixed composition, with a light-mass fraction (protons and helium nuclei) of about 80 per cent. Unless, contrary to current expectations, the extragalactic component of cosmic rays contributes substantially to the total flux below 10(17.5) electronvolts, our measurements indicate the existence of an additional galactic component, to account for the light composition that we measured in the 10(17)-10(17.5) electronvolt range.LOFAR MSSS: detection of a low-frequency radio transient in 400 h of monitoring of the North Celestial Pole
Monthly Notices of the Royal Astronomical Society Oxford University Press 456:3 (2016) 2321-2342
Abstract:
We present the results of a four-month campaign searching for low-frequency radio transients near the North Celestial Pole with the Low-Frequency Array (LOFAR), as part of the Multifrequency Snapshot Sky Survey (MSSS). The data were recorded between 2011 December and 2012 April and comprised 2149 11-min snapshots, each covering 175 deg 2 . We have found one convincing candidate astrophysical transient, with a duration of a few minutes and a flux density at 60 MHz of 15-25 Jy. The transient does not repeat and has no obvious optical or high-energy counterpart, as a result of which its nature is unclear. The detection of this event implies a transient rate at 60 MHz of 3.9 -3.7 +14.7 × 10 -4 d -1 deg -2 , and a transient surface density of 1.5 × 10 -5 deg -2 , at a 7.9-Jy limiting flux density and ~10-min time-scale. The campaign data were also searched for transients at a range of other time-scales, from 0.5 to 297 min, which allowed us to place a range of limits on transient rates at 60MHz as a function of observation duration.Wide-band, low-frequency pulse profiles of 100 radio pulsars with LOFAR⋆
Astronomy & Astrophysics EDP Sciences 586 (2016) a92
A framework for assessing the performance of pulsar search pipelines
Monthly Notices of the Royal Astronomical Society Oxford University Press 467:2 (2016) 1661-1677