Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
sky and dish

Aris Karastergiou

Professor of Astrophysics and Fellow at St Edmund Hall

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • The Square Kilometre Array (SKA)
  • Gamma-ray astronomy
Aris.Karastergiou@physics.ox.ac.uk
Telephone: 01865 (2)73642
Denys Wilkinson Building, room 603C
  • About
  • Publications

Characterization of a dense aperture array for radio astronomy

Astronomy & Astrophysics EDP Sciences 589 (2016) a77

Authors:

SA Torchinsky, AOH Olofsson, B Censier, A Karastergiou, M Serylak, P Picard, P Renaud, C Taffoureau
More details from the publisher

A large light-mass component of cosmic rays at 10(17)-10(17.5) electronvolts from radio observations

Nature Springer Nature (2016)

Authors:

S Buitink, A Corstanje, H Falcke, Hörandel, T Huege, A Nelles, JP Rachen, L Rossetto, P Schellart, O Scholten, S Ter Ter Veen, S Thoudam, TNG Trinh, J Anderson, A Asgekar, IM Avruch, ME Bell, MJ Bentum, G Bernardi, P Best, A Bonafede, F Breitling, JW Broderick, WN Brouw, M Brüggen, HR Butcher, D Carbone, B Ciardi, JE Conway, F De Gasperin, E De Geus, A Deller, R-J Dettmar, G Van Diepen, S Duscha, J Eislöffel, D Engels, JE Enriquez, RA Fallows, Robert Fender, C Ferrari, W Frieswijk, MA Garrett, JM Grießmeier, AW Gunst, MP Van Haarlem, TE Hassall, G Heald, JWT Hessels, M Hoeft

Abstract:

Cosmic rays are the highest-energy particles found in nature. Measurements of the mass composition of cosmic rays with energies of 10(17)-10(18) electronvolts are essential to understanding whether they have galactic or extragalactic sources. It has also been proposed that the astrophysical neutrino signal comes from accelerators capable of producing cosmic rays of these energies. Cosmic rays initiate air showers--cascades of secondary particles in the atmosphere-and their masses can be inferred from measurements of the atmospheric depth of the shower maximum (Xmax; the depth of the air shower when it contains the most particles) or of the composition of shower particles reaching the ground. Current measurements have either high uncertainty, or a low duty cycle and a high energy threshold. Radio detection of cosmic rays is a rapidly developing technique for determining Xmax (refs 10, 11) with a duty cycle of, in principle, nearly 100 per cent. The radiation is generated by the separation of relativistic electrons and positrons in the geomagnetic field and a negative charge excess in the shower front. Here we report radio measurements of Xmax with a mean uncertainty of 16 grams per square centimetre for air showers initiated by cosmic rays with energies of 10(17)-10(17.5) electronvolts. This high resolution in Xmax enables us to determine the mass spectrum of the cosmic rays: we find a mixed composition, with a light-mass fraction (protons and helium nuclei) of about 80 per cent. Unless, contrary to current expectations, the extragalactic component of cosmic rays contributes substantially to the total flux below 10(17.5) electronvolts, our measurements indicate the existence of an additional galactic component, to account for the light composition that we measured in the 10(17)-10(17.5) electronvolt range.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

LOFAR MSSS: detection of a low-frequency radio transient in 400 h of monitoring of the North Celestial Pole

Monthly Notices of the Royal Astronomical Society Oxford University Press 456:3 (2016) 2321-2342

Authors:

AJ Stewart, Robert Fender, JW Broderick, TE Hassall, T Muñoz-Darias, A Rowlinson, JD Swinbank, TD Staley, GJ Molenaar, B Scheers, TL Grobler, M Pietka, G Heald, JP McKean, ME Bell, A Bonafede, RP Breton, D Carbone, Y Cendes, AO Clarke, S Corbel, F de Gasperin, J Eislöffel, H Falcke, C Ferrari, J-M Grießmeier, MJ Hardcastle, V Heesen, JWT Hessels, A Horneffer, M Iacobelli, P Jonker, Aris Karastergiou, G Kokotanekov, VI Kondratiev, M Kuniyoshi, CJ Law, J van Leeuwen, S Markoff, JCA Miller-Jones, D Mulcahy, E Orru, M Pandey-Pommier, L Pratley, E Rol, HJA Röttgering, AMM Scaife, A Shulevski, CA Sobey, BW Stappers

Abstract:

We present the results of a four-month campaign searching for low-frequency radio transients near the North Celestial Pole with the Low-Frequency Array (LOFAR), as part of the Multifrequency Snapshot Sky Survey (MSSS). The data were recorded between 2011 December and 2012 April and comprised 2149 11-min snapshots, each covering 175 deg 2 . We have found one convincing candidate astrophysical transient, with a duration of a few minutes and a flux density at 60 MHz of 15-25 Jy. The transient does not repeat and has no obvious optical or high-energy counterpart, as a result of which its nature is unclear. The detection of this event implies a transient rate at 60 MHz of 3.9 -3.7 +14.7 × 10 -4 d -1 deg -2 , and a transient surface density of 1.5 × 10 -5 deg -2 , at a 7.9-Jy limiting flux density and ~10-min time-scale. The campaign data were also searched for transients at a range of other time-scales, from 0.5 to 297 min, which allowed us to place a range of limits on transient rates at 60MHz as a function of observation duration.
More details from the publisher
Details from ORA
More details

Wide-band, low-frequency pulse profiles of 100 radio pulsars with LOFAR⋆

Astronomy & Astrophysics EDP Sciences 586 (2016) a92

Authors:

M Pilia, JWT Hessels, BW Stappers, VI Kondratiev, M Kramer, J van Leeuwen, P Weltevrede, AG Lyne, K Zagkouris, TE Hassall, AV Bilous, RP Breton, H Falcke, J-M Grießmeier, E Keane, A Karastergiou, M Kuniyoshi, A Noutsos, S Osłowski, M Serylak, C Sobey, S ter Veen, A Alexov, J Anderson, A Asgekar, IM Avruch, ME Bell, MJ Bentum, G Bernardi, L Bîrzan, A Bonafede, F Breitling, JW Broderick, M Brüggen, B Ciardi, S Corbel, E de Geus, A de Jong, A Deller, S Duscha, J Eislöffel, RA Fallows, R Fender, C Ferrari, W Frieswijk, MA Garrett, AW Gunst, JP Hamaker, G Heald, A Horneffer, P Jonker, E Juette, G Kuper, P Maat, G Mann, S Markoff, R McFadden, D McKay-Bukowski, JCA Miller-Jones, A Nelles, H Paas, M Pandey-Pommier, M Pietka, R Pizzo, AG Polatidis, W Reich, H Röttgering, A Rowlinson, D Schwarz, O Smirnov, M Steinmetz, A Stewart, JD Swinbank, M Tagger, Y Tang, C Tasse, S Thoudam, MC Toribio, AJ van der Horst, R Vermeulen, C Vocks, RJ van Weeren, RAMJ Wijers, R Wijnands, SJ Wijnholds, O Wucknitz, P Zarka
More details from the publisher
More details

A framework for assessing the performance of pulsar search pipelines

Monthly Notices of the Royal Astronomical Society Oxford University Press 467:2 (2016) 1661-1677

Authors:

Elmarie van Heerden, Aris Karastergiou, Stephen J Roberts

Abstract:

In this paper, we present a framework for assessing the effect of non-stationary Gaussian noise and radio frequency interference (RFI) on the signal to noise ratio, the number of false positives detected per true positive and the sensitivity of standard pulsar search pipelines. The results highlight the necessity to develop algorithms that are able to identify and remove non-stationary variations from the data before RFI excision and searching is performed in order to limit false positive detections. The results also show that the spectrum whitening algorithms currently employed, severely affect the efficiency of pulsar search pipelines by reducing their sensitivity to long period pulsars.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 23
  • Page 24
  • Page 25
  • Page 26
  • Current page 27
  • Page 28
  • Page 29
  • Page 30
  • Page 31
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet