Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

David Keen

Visiting Professor

Sub department

  • Condensed Matter Physics

Research groups

  • X-ray and neutron scattering
david.keen@physics.ox.ac.uk
Telephone: 01865 (2)72310
Clarendon Laboratory, room 106
  • About
  • Publications

Magnetic structure of paramagnetic MnO

Physical Review B American Physical Society 97:1 (2018) 014429

Authors:

JAM Paddison, MJ Gutmann, MT Dove, DA Keen, Andrew Goodwin

Abstract:

Using a combination of single-crystal neutron scattering and reverse Monte Carlo refinements, we study the magnetic structure of paramagnetic MnO at a temperature (160 K) substantially below the Curie-Weiss temperature |θ|∼550 K. The microscopic picture we develop reveals a locally ordered domain structure that persists over distances many times larger than the correlation length implied by direct analysis of the spin-correlation function. Moreover, the directional dependence of paramagnetic spin correlations in paramagnetic MnO differs in some important respects from that of its incipient ordered antiferromagnetic state. Our results demonstrate that atomistic refinement to large three-dimensional neutron-scattering datasets is a practical approach, and have implications for the understanding of paramagnetic states in weakly frustrated systems, including high-temperature superconductors.
More details from the publisher
Details from ORA
More details
More details

Liquid metal-organic frameworks.

Nature materials 16:11 (2017) 1149-1154

Authors:

Romain Gaillac, Pluton Pullumbi, Kevin A Beyer, Karena W Chapman, David A Keen, Thomas D Bennett, François-Xavier Coudert

Abstract:

Metal-organic frameworks (MOFs) are a family of chemically diverse materials, with applications in a wide range of fields, covering engineering, physics, chemistry, biology and medicine. Until recently, research has focused almost entirely on crystalline structures, yet now a clear trend is emerging, shifting the emphasis onto disordered states, including 'defective by design' crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF liquid, obtained by melting a zeolitic imidazolate framework. We combine in situ variable temperature X-ray, ex situ neutron pair distribution function experiments, and first-principles molecular dynamics simulations to study the melting phenomenon and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the MOF liquid.
More details from the publisher
More details
More details

Direct visualization of critical hydrogen atoms in a pyridoxal 5'-phosphate enzyme.

Nature communications 8:1 (2017) 955

Authors:

Steven Dajnowicz, Ryne C Johnston, Jerry M Parks, Matthew P Blakeley, David A Keen, Kevin L Weiss, Oksana Gerlits, Andrey Kovalevsky, Timothy C Mueser

Abstract:

Enzymes dependent on pyridoxal 5'-phosphate (PLP, the active form of vitamin B6) perform a myriad of diverse chemical transformations. They promote various reactions by modulating the electronic states of PLP through weak interactions in the active site. Neutron crystallography has the unique ability of visualizing the nuclear positions of hydrogen atoms in macromolecules. Here we present a room-temperature neutron structure of a homodimeric PLP-dependent enzyme, aspartate aminotransferase, which was reacted in situ with α-methylaspartate. In one monomer, the PLP remained as an internal aldimine with a deprotonated Schiff base. In the second monomer, the external aldimine formed with the substrate analog. We observe a deuterium equidistant between the Schiff base and the C-terminal carboxylate of the substrate, a position indicative of a low-barrier hydrogen bond. Quantum chemical calculations and a low-pH room-temperature X-ray structure provide insight into the physical phenomena that control the electronic modulation in aspartate aminotransferase.Pyridoxal 5'-phosphate (PLP) is a ubiquitous co factor for diverse enzymes, among them aspartate aminotransferase. Here the authors use neutron crystallography, which allows the visualization of the positions of hydrogen atoms, and computation to characterize the catalytic mechanism of the enzyme.
More details from the publisher
More details
More details

Magnetic structure and spin-wave excitations in the multiferroic magnetic metal-organic framework (CD3)2ND2[Mn(DCO2)3]

Physical Review B American Physical Society (APS) 96:9 (2017) 094423

Authors:

HC Walker, HD Duncan, MD Le, DA Keen, DJ Voneshen, AE Phillips
More details from the publisher

Focus issue on studies of structural disorder using reverse Monte Carlo methods

Physica Scripta IOP Publishing 92:7 (2017) 070201
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • Current page 19
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet