Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

David Keen

Visiting Professor

Sub department

  • Condensed Matter Physics

Research groups

  • X-ray and neutron scattering
david.keen@physics.ox.ac.uk
Telephone: 01865 (2)72310
Clarendon Laboratory, room 106
  • About
  • Publications

Crystallography and physics

Physica Scripta IOP Publishing 89:12 (2014) 128003
More details from the publisher

L-Arabinose binding, isomerization, and epimerization by D-xylose isomerase: X-ray/neutron crystallographic and molecular simulation study.

Structure (London, England : 1993) 22:9 (2014) 1287-1300

Authors:

Paul Langan, Amandeep K Sangha, Troy Wymore, Jerry M Parks, Zamin Koo Yang, B Leif Hanson, Zoe Fisher, Sax A Mason, Matthew P Blakeley, V Trevor Forsyth, Jenny P Glusker, Horace L Carrell, Jeremy C Smith, David A Keen, David E Graham, Andrey Kovalevsky

Abstract:

D-xylose isomerase (XI) is capable of sugar isomerization and slow conversion of some monosaccharides into their C2-epimers. We present X-ray and neutron crystallographic studies to locate H and D atoms during the respective isomerization and epimerization of L-arabinose to L-ribulose and L-ribose, respectively. Neutron structures in complex with cyclic and linear L-arabinose have demonstrated that the mechanism of ring-opening is the same as for the reaction with D-xylose. Structural evidence and QM/MM calculations show that in the reactive Michaelis complex L-arabinose is distorted to the high-energy (5)S1 conformation; this may explain the apparent high KM for this sugar. MD-FEP simulations indicate that amino acid substitutions in a hydrophobic pocket near C5 of L-arabinose can enhance sugar binding. L-ribulose and L-ribose were found in furanose forms when bound to XI. We propose that these complexes containing Ni(2+) cofactors are Michaelis-like and the isomerization between these two sugars proceeds via a cis-ene-diol mechanism.
More details from the publisher
More details

Observation of interstitial molecular hydrogen in clathrate hydrates.

Angewandte Chemie (International ed. in English) 53:40 (2014) 10710-10713

Authors:

R Gary Grim, Brian C Barnes, Patrick G Lafond, Winfred A Kockelmann, David A Keen, Alan K Soper, Masaki Hiratsuka, Kenji Yasuoka, Carolyn A Koh, Amadeu K Sum

Abstract:

The current knowledge and description of guest molecules within clathrate hydrates only accounts for occupancy within regular polyhedral water cages. Experimental measurements and simulations, examining the tert-butylamine + H2 + H2O hydrate system, now suggest that H2 can also be incorporated within hydrate crystal structures by occupying interstitial sites, that is, locations other than the interior of regular polyhedral water cages. Specifically, H2 is found within the shared heptagonal faces of the large (4(3)5(9)6(2)7(3)) cage and in cavities formed from the disruption of smaller (4(4)5(4)) water cages. The ability of H2 to occupy these interstitial sites and fluctuate position in the crystal lattice demonstrates the dynamic behavior of H2 in solids and reveals new insight into guest-guest and guest-host interactions in clathrate hydrates, with potential implications in increasing overall energy storage properties.
More details from the publisher
More details

The missing boundary in the phase diagram of PbZr1-xTixO3

Nature Communications Nature Publishing Group 5 (2014) 5231

Authors:

N Zhang, H Yokota, Anthony Glazer, Z Ren, DA Keen, DS Keeble, PA Thomas, ZG Ye

Abstract:

PbZr(1-x)Ti(x)O3 (PZT) is one of the most important and widely used piezoelectric materials. The study of its local and average structures is of fundamental importance in understanding the origin of its high-performance piezoelectricity. Pair distribution function analysis and Rietveld refinement have been carried out to study both the short- and long-range order in the Zr-rich rhombohedral region of the PZT phase diagram. The nature of the monoclinic phase across the Zr-rich and morphotropic phase boundary area of PZT is clarified. Evidence is found that long-range average rhombohedral and both long- and short-range monoclinic regions coexist at all compositions. In addition, a boundary between a monoclinic (M(A)) structure and another monoclinic (M(B)) structure has been found. The general advantage of a particular monoclinic distortion (M(A)) for high piezoactivity is discussed from a spatial structural model of susceptibility to stress and electric field, which is applicable across the wide field of perovskite materials science.
More details from the publisher
Details from ORA
More details
More details

Geometric switching of linear to area negative thermal expansion in uniaxial metal–organic frameworks

CrystEngComm Royal Society of Chemistry (RSC) 16:17 (2014) 3498-3506

Authors:

Ines E Collings, Matthew G Tucker, David A Keen, Andrew L Goodwin
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • Current page 24
  • Page 25
  • Page 26
  • Page 27
  • Page 28
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet