Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Jinhyub Kim

Postdoctoral Research Assistant

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Euclid
jinhyub.kim@physics.ox.ac.uk
Denys Wilkinson Building, room 555B
  • About
  • Publications

Exploring the Masses of the Two Most Distant Gravitational Lensing Clusters at Cosmic Noon

The Astrophysical Journal, Volume 991, Issue 1, id.109, 10 pp.

Authors:

Kim, Jinhyub; Jee, M. James; Andreon, Stefano; Mroczkowski, Tony; Miller, Lance; van Marrewijk, Joshiwa; Khim, Hye Gyeong

Abstract:

Observations over the past decade have shown that galaxy clusters undergo the most transformative changes during the z = 1.5–2 epoch. However, challenges such as low lensing efficiency, high shape measurement uncertainty, and a scarcity of background galaxies have prevented us from characterizing their masses with weak gravitational lensing (WL) beyond redshift z ∼ 1.75. In this paper, we report the successful WL detection of JKCS 041 and XLSSC 122 at z = 1.80 and z = 1.98, respectively, utilizing deep infrared imaging data from the Hubble Space Telescope with careful removal of instrumental effects. These are the most distant clusters ever measured through WL. The mass peaks of JKCS 041 and XLSSC 122, which coincide with the X-ray peak positions of the respective clusters, are detected at the ∼3.7σ and ∼3.2σ levels, respectively. Assuming a single spherical Navarro–Frenk–White profile, we estimate that JKCS 041 has a virial mass of M200c = (5.4 ± 1.6) × 1014 M⊙, while the mass of XLSSC 122 is determined to be M200c = (3.3 ± 1.8) × 1014 M⊙. These WL masses are consistent with the estimates inferred from their X-ray observations. We conclude that although the probability of finding such massive clusters at their redshifts is certainly low, their masses can still be accommodated within the current ΛCDM paradigm.
More details from the publisher
Details from ArXiV

Exploring the Masses of the Two Most Distant Gravitational Lensing Clusters at Cosmic Noon

The Astrophysical Journal American Astronomical Society 991:1 (2025) 109

Authors:

Jinhyub Kim, M James Jee, Stefano Andreon, Tony Mroczkowski, Lance Miller, Joshiwa van Marrewijk, Hye Gyeong Khim

Abstract:

Observations over the past decade have shown that galaxy clusters undergo the most transformative changes during the z = 1.5–2 epoch. However, challenges such as low lensing efficiency, high shape measurement uncertainty, and a scarcity of background galaxies have prevented us from characterizing their masses with weak gravitational lensing (WL) beyond redshift z ∼ 1.75. In this paper, we report the successful WL detection of JKCS 041 and XLSSC 122 at z = 1.80 and z = 1.98, respectively, utilizing deep infrared imaging data from the Hubble Space Telescope with careful removal of instrumental effects. These are the most distant clusters ever measured through WL. The mass peaks of JKCS 041 and XLSSC 122, which coincide with the X-ray peak positions of the respective clusters, are detected at the ∼3.7σ and ∼3.2σ levels, respectively. Assuming a single spherical Navarro–Frenk–White profile, we estimate that JKCS 041 has a virial mass of M200c = (5.4 ± 1.6) × 1014 M⊙, while the mass of XLSSC 122 is determined to be M200c = (3.3 ± 1.8) × 1014 M⊙. These WL masses are consistent with the estimates inferred from their X-ray observations. We conclude that although the probability of finding such massive clusters at their redshifts is certainly low, their masses can still be accommodated within the current ΛCDM paradigm.
More details from the publisher
Details from ORA
More details

HI properties and star formation history of a fly-by pair of blue compact dwarf galaxies⋆

Astronomy & Astrophysics EDP Sciences 605 (2017) a54

Authors:

Jinhyub Kim, Aeree Chung, O Ivy Wong, Bumhyun Lee, Eon-Chang Sung, Lister Staveley-Smith
More details from the publisher

Euclid: I. Overview of the Euclid mission

Astronomy & Astrophysics, Volume 697, id.A1, 94 pp.

Authors:

Euclid Collaboration; Mellier, Y.; Abdurro'uf; Acevedo Barroso, J. A.; Achúcarro, A. ; Adamek, J.; Adam, R.; Addison, G. E.; Aghanim, N.; Aguena, M. ; Ajani, V.; Akrami, Y.; Al-Bahlawan, A. ; Alavi, A.; Albuquerque, I. S.; Alestas, G.; Alguero, G. ; Allaoui, A. ; Allen, S. W.; Allevato, V.; ...

Abstract:

The current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015–2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14 000 deg2 of extragalactic sky. In addition to accurate weak lensing and clustering measurements that probe structure formation over half of the age of the Universe, its primary probes for cosmology, these exquisite data will enable a wide range of science. This paper provides a high-level overview of the mission, summarising the survey characteristics, the various data-processing steps, and data products. We also highlight the main science objectives and expected performance.
More details from the publisher
Details from ArXiV

Exploring the Masses of the Two Most Distant Gravitational Lensing Clusters at Cosmic Noon

The Astrophysical Journal, Volume 991, Issue 1, id.109, 10 pp.

Authors:

Kim, Jinhyub; Jee, M. James; Andreon, Stefano; Mroczkowski, Tony; Miller, Lance; van Marrewijk, Joshiwa; Khim, Hye Gyeong

Abstract:

Observations over the past decade have shown that galaxy clusters undergo the most transformative changes during the z = 1.5–2 epoch. However, challenges such as low lensing efficiency, high shape measurement uncertainty, and a scarcity of background galaxies have prevented us from characterizing their masses with weak gravitational lensing (WL) beyond redshift z ∼ 1.75. In this paper, we report the successful WL detection of JKCS 041 and XLSSC 122 at z = 1.80 and z = 1.98, respectively, utilizing deep infrared imaging data from the Hubble Space Telescope with careful removal of instrumental effects. These are the most distant clusters ever measured through WL. The mass peaks of JKCS 041 and XLSSC 122, which coincide with the X-ray peak positions of the respective clusters, are detected at the ∼3.7σ and ∼3.2σ levels, respectively. Assuming a single spherical Navarro–Frenk–White profile, we estimate that JKCS 041 has a virial mass of M200c = (5.4 ± 1.6) × 1014 M⊙, while the mass of XLSSC 122 is determined to be M200c = (3.3 ± 1.8) × 1014 M⊙. These WL masses are consistent with the estimates inferred from their X-ray observations. We conclude that although the probability of finding such massive clusters at their redshifts is certainly low, their masses can still be accommodated within the current ΛCDM paradigm.
More details from the publisher
Details from ArXiV

Pagination

  • Current page 1
  • Page 2
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet