Investigating stellar activity through eight years of Sun-as-a-star observations
Monthly Notices of the Royal Astronomical Society, Volume 531, Issue 4, pp.4238-4262
Abstract:
Stellar magnetic activity induces both distortions and Doppler-shifts in the absorption line profiles of Sun-like stars. Those effects produce apparent radial velocity (RV) signals which greatly hamper the search for potentially habitable, Earth-like planets. In this work, we investigate these distortions in the Sun using cross-correlation functions (CCFs), derived from intensive monitoring with the high-precision spectrograph HARPS-N. We show that the RV signal arising from line-shape variations on time-scales associated with the Sun's rotation and activity cycle can be robustly extracted from the data, reducing the RV dispersion by half. Once these have been corrected, activity-induced Doppler-shifts remain, that are modulated at the solar rotation period, and that are most effectively modelled in the time domain, using Gaussian processes (GPs). Planet signatures are still best retrieved with multidimensonal GPs, when activity is jointly modelled from the raw RVs and indicators of the line width or of the Ca II H & K emission. After GP modelling, the residual RVs exhibit a dispersion of 0.6-0.8 m s-1, likely to be dominated by signals induced by supergranulation. Finally, we find that the statistical properties of the RVs evolve significantly over time, and that this evolution is primarily driven by sunspots, which control the smoothness of the signal. Such evolution, which reduces the sensitivity to long-period planet signatures, is no longer seen in the activity-induced Doppler-shifts, which is promising for long term RV monitoring surveys such as the Terra Hunting Experiment or the PLATO follow-up campaign.
ATMOSPHERIX: I- an open source high-resolution transmission spectroscopy pipeline for exoplanets atmospheres with SPIRou
Monthly Notices of the Royal Astronomical Society, Volume 527, Issue 1, pp.544-565
Abstract:
Atmospheric characterization of exoplanets from the ground is an actively growing field of research. In this context, we have created the ATMOSPHERIX consortium: a research project aimed at characterizing exoplanets atmospheres using ground-based high-resolution spectroscopy. This paper presents the publicly available data analysis pipeline and demonstrates the robustness of the recovered planetary parameters from synthetic data. Simulating planetary transits using synthetic transmission spectra of a hot Jupiter that were injected into real SPIRou observations of the non-transiting system Gl 15 A, we show that our pipeline is successful at recovering the planetary signal and input atmospheric parameters. We also introduce a deep learning algorithm to optimize data reduction which proves to be a reliable, alternative tool to the commonly used principal component analysis. We estimate the level of uncertainties and possible biases when retrieving parameters such as temperature and composition and hence the level of confidence in the case of retrieval from real data. Finally, we apply our pipeline onto two real transits of HD 189733 b observed with SPIRou and obtain similar results than in the literature. In summary, we have developed a publicly available and robust pipeline for the forthcoming studies of the targets to be observed in the framework of the ATMOSPHERIX consortium, which can easily be adapted to other high resolution instruments than SPIRou (e.g. VLT-CRIRES, MAROON-X, ELT-ANDES).
ATMOSPHERIX: II- Characterizing exoplanet atmospheres through transmission spectroscopy with SPIRou
Monthly Notices of the Royal Astronomical Society, Volume 527, Issue 1, pp.566-582
Abstract:
In a companion paper, we introduced a publicly available pipeline to characterize exoplanet atmospheres through high-resolution spectroscopy. In this paper, we use this pipeline to study the biases and degeneracies that arise in atmospheric characterization of exoplanets in near-infrared ground-based transmission spectroscopy. We inject synthetic planetary transits into sequences of SPIRou spectra of the well known M dwarf star Gl 15 A, and study the effects of different assumptions on the retrieval. We focus on (i) mass and radius uncertainties, (ii) non-isothermal vertical profiles, and (iii) identification and retrieval of multiple species. We show that the uncertainties on mass and radius should be accounted for in retrievals and that depth-dependent temperature information can be derived from high-resolution transmission spectroscopy data. Finally, we discuss the impact of selecting wavelength orders in the retrieval and the issues that arise when trying to identify a single species in a multispecies atmospheric model. This analysis allows us to understand better the results obtained through transmission spectroscopy and their limitations in preparation to the analysis of actual SPIRou data.
The polarimetric performance of HARPS3 and its impact on the Terra Hunting Experiment scheduling
Proceedings of the SPIE, Volume 13096, id. 130968C 11 pp. (2024)
Abstract:
The main goal of the third iteration of the High Accuracy Radial velocity Planet Searcher (HARPS3) is to search for Earth-like planets over a ten-year programme. As part of this search, spectropolarimetric observations have been envisioned foreseeing the need for new ways to reduce stellar activity jitter which obscures the 10 cm/sec radial velocity signal of such planets. HARPS3 has thus been designed with an insertable polarimetric sub-unit. This sub-unit consists of two superachromatic polymer retarders, one quarter-wave and one half-wave, to separately detect all Stokes parameters of a target, as well as a polarimetric beam splitter to separate the parallel polarimetric beams by 30 mm to feed the science fibers. In this paper we report on the currently nonfunctional polarimetric sub-unit of the HARPS3 spectrograph and discuss the upgrade expected before commissioning that will fix current issues. We discuss the possible observation schedule of polarimetric observations for the Terra Hunting Experiment and the potential impacts of polarimetric observations on mitigating stellar radial velocity jitter.
Optical and near-infrared stellar activity characterization of the early M dwarf Gl 205 with SOPHIE and SPIRou
Astronomy & Astrophysics, Volume 673, id.A14, 40 pp.
Abstract:
Context. The stellar activity of M dwarfs is the main limiting factor in the discovery and characterization of the exoplanets orbiting them, because it induces quasi-periodic radial velocity (RV) variations.
Aims: We aim to characterize the magnetic field and stellar activity of the early, moderately active M dwarf Gl 205 in the optical and near-infrared (NIR) domains.
Methods: We obtained high-precision quasi-simultaneous spectra in the optical and NIR with the SOPHIE spectrograph and SPIRou spectropolarimeter between 2019 and 2022. We computed the RVs from both instruments and the SPIRou Stokes V profiles. We used Zeeman-Doppler imaging (ZDI) to map the large-scale magnetic field over the time span of the observations. We studied the temporal behavior of optical and NIR RVs and activity indicators with the Lomb-Scargle periodogram and a quasi-periodic Gaussian process regression (GPR). In the NIR, we studied the equivalent width of Al I, Ti I, K I, Fe I, and He I. We modeled the activity-induced RV jitter using a multi-dimensional GPR with activity indicators as ancillary time series.
Results: The optical and NIR RVs show similar scatter but NIR shows a more complex temporal evolution. We observe an evolution of the magnetic field topology from a poloidal dipolar field in 2019 to a dominantly toroidal field in 2022. We measured a stellar rotation period of Prot = 34.4 ± 0.5 days in the longitudinal magnetic field. Using ZDI, we measure the amount of latitudinal differential rotation (DR) shearing the stellar surface, yielding rotation periods of Peq = 32.0 ± 1.8 days at the stellar equator and Ppol = 45.5 ± 0.3 days at the poles. We observed inconsistencies in the periodicities of the activity indicators that could be explained by these DR values. The multi-dimensional GP modeling yields an RMS of the RV residuals down to the noise level of 3 m s−1 for both instruments while using Hα and the BIS in the optical and the full width at half maximum (FWHM) in the NIR as ancillary time series.
Conclusions: The RV variations observed in Gl 205 are due to stellar activity, with a complex evolution and different expressions in the optical and NIR revealed thanks to an extensive follow-up. Spectropolarimetry remains the best technique to constrain the stellar rotation period over standard activity indicators, particularly for moderately active M dwarfs.
Aims: We aim to characterize the magnetic field and stellar activity of the early, moderately active M dwarf Gl 205 in the optical and near-infrared (NIR) domains.
Methods: We obtained high-precision quasi-simultaneous spectra in the optical and NIR with the SOPHIE spectrograph and SPIRou spectropolarimeter between 2019 and 2022. We computed the RVs from both instruments and the SPIRou Stokes V profiles. We used Zeeman-Doppler imaging (ZDI) to map the large-scale magnetic field over the time span of the observations. We studied the temporal behavior of optical and NIR RVs and activity indicators with the Lomb-Scargle periodogram and a quasi-periodic Gaussian process regression (GPR). In the NIR, we studied the equivalent width of Al I, Ti I, K I, Fe I, and He I. We modeled the activity-induced RV jitter using a multi-dimensional GPR with activity indicators as ancillary time series.
Results: The optical and NIR RVs show similar scatter but NIR shows a more complex temporal evolution. We observe an evolution of the magnetic field topology from a poloidal dipolar field in 2019 to a dominantly toroidal field in 2022. We measured a stellar rotation period of Prot = 34.4 ± 0.5 days in the longitudinal magnetic field. Using ZDI, we measure the amount of latitudinal differential rotation (DR) shearing the stellar surface, yielding rotation periods of Peq = 32.0 ± 1.8 days at the stellar equator and Ppol = 45.5 ± 0.3 days at the poles. We observed inconsistencies in the periodicities of the activity indicators that could be explained by these DR values. The multi-dimensional GP modeling yields an RMS of the RV residuals down to the noise level of 3 m s−1 for both instruments while using Hα and the BIS in the optical and the full width at half maximum (FWHM) in the NIR as ancillary time series.
Conclusions: The RV variations observed in Gl 205 are due to stellar activity, with a complex evolution and different expressions in the optical and NIR revealed thanks to an extensive follow-up. Spectropolarimetry remains the best technique to constrain the stellar rotation period over standard activity indicators, particularly for moderately active M dwarfs.