Automated characterisation and operational insights of superconducting travelling wave parametric amplifiers: unveiling novel behaviours and enhancing tunability
Journal of Instrumentation IOP Publishing 19:08 (2024) P08024
Abstract:
Superconducting travelling wave parametric amplifiers (TWPAs) exhibit great promise across various applications, owing to their broadband nature, quantum-limited noise performance, and high-gain operation. Whilst their construction is relatively simple, particularly for thin-film-based TWPAs, challenges such as the requirement for an extremely long transmission line, current fabrication limitations, and their sensitivity to fabrication tolerances, mean that their optimal operating conditions often differ from those anticipated during the design stage. As a result, manual fine-tuning of numerous operational parameters becomes necessary to recover optimal performance; a process that is both labour-intensive and time-consuming. This paper introduces an automated methodology designed to significantly accelerate the characterisation of a TWPA by several orders of magnitude without requiring human intervention. Additionally, we have developed metrics to condense the multitude of measured frequency responses of the TWPA, obtained in data cube form, into an easily-understandable format for further scientific interpretation. To demonstrate the efficacy and speed of our methodology, we utilise an existing NbTiN (niobium titanium nitride) TWPA as an example. This showcases the capability of our approach to unveil both broad- and fine-scale behaviours of the device, highlighting the importance of an automated experimental setup for the in-depth investigation of TWPAs for future developments.Broadband tuneable travelling wave parametric multiplier based on high-gap superconducting thin film
Proceedings Volume 13102, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XII Society of Photo-optical Instrumentation Engineers (2024)
Abstract:
The well-established technology of the superconducting quantum parametric amplifier (SPA) can be reconfigured to perform functions beyond amplification, such as frequency multiplication, by utilising the low-noise, low-loss superconducting nonlinear transmission line. This versatile technology holds potential for various applications, including ‘pumping’ a millimetre (mm) or sub-mm wave heterodyne mixer or driving a high-frequency SPA. Its significance lies in the ability to incorporate a high-purity signal source into the cryogenic stage alongside the primary detector, thereby eliminating noise associated with room temperature sources. Additionally, there is potential for on-chip integration with the detector circuit, leading to a more compact architecture.This manuscript details the design of a travelling-wave parametric multiplier (TWPaM) that exploits the nonlinear wave-mixing mechanism to enhance the third harmonic growth from a strong pump tone injected into the travelling wave parametric amplifier (TWPA)-like device. While this functionality has been demonstrated previously, it exhibited narrowband performance. In this manuscript, we present our approach to designing a dispersion engineering scheme that enables the generation of broadband tunable tripler tones with high conversion efficiency. We showcase our design methodology using a niobium titanium nitride (NbTiN) high-gap thin-film transmission line as an example. Our presentation includes the theoretical model governing the physics of higher harmonics generation, emphasising phase-matching conditions that allow for broadband operation while suppressing unwanted modes. Although the ultimate aim is to develop a mm/sub-mm TWPaM, we aim to demonstrate the feasibility of their operation with a scaled microwave design in this manuscript. We will show that we can theoretically achieve close to 35% conversion efficiency across approximately 60% operational bandwidth.
Investigating the effects of sum-frequency conversions and surface impedance uniformity in traveling wave superconducting parametric amplifiers
Journal of Applied Physics AIP Publishing 135:12 (2024) 124402
Abstract:
Traveling wave parametric amplifiers (TWPAs) offer the most promising solution for high gain, broadband, and quantum noise limited amplification at microwave frequencies. Experimental realization of TWPAs has proved challenging with often major discrepancies between the theoretically predicted and the measured gain performance of the devices. Here, we extend the conventional modeling techniques to account for spatial variation in the surface impedance of the thin film and the parametric sum-frequency conversions effect, which subsequently results in accurate reproduction of experimental device behavior. We further show that such an analysis may be critical to ensure fabricated TWPAs can operate as designed.Operation of kinetic-inductance travelling wave parametric amplifiers at millimetre wavelengths
Superconductor Science and Technology IOP Publishing 37 (2024) 035006
Abstract:
It is expected that the operation of microwave Kinetic Inductance Travelling Wave Parametric Amplifiers (KITWPAs) can be extended to the millimetre (mm) and the sub-mm wavelength range as long as the frequency is below the gap frequency of the superconducting film. This paper presents possible mm-wave designs for KITWPAs based on microstrip transmission lines. Our device is designed based on the BCS (Bardeen-Cooper-Schrieffer) model which successfully reproduces the measured transmission profile, gain, bandwidth, and nonlinear response of a fabricated KITWPA operating in the Ka-band, and includes the millimetre-wave dielectric loss determined by fitting the quality factor of a Wband microstrip resonator. We suggest a layout for a KITWPA operating near 220 GHz that can be fabricated using the same superconducting properties as the Ka-band device and can be coupled to a waveguide system. We conclude the paper by extending the 220 GHz design to higher frequency regimes approaching 1 THz.Experimental characterisation of titanium nitride transmission lines for applications as kinetic inductance travelling wave parametric amplifiers
32nd International Symposium on Space Terahertz Technology (ISSTT 2022) International Symposium on Space Terahertz Technology (2023) 104-105