VHEE FLASH sparing effect measured at CLEAR, CERN with DNA damage of pBR322 plasmid as a biological endpoint
Scientific Reports Nature Research 14:1 (2024) 14803
Abstract:
Ultra-high dose rate (UHDR) irradiation has been shown to have a sparing effect on healthy tissue, an effect known as ‘FLASH’. This effect has been studied across several radiation modalities, including photons, protons and clinical energy electrons, however, very little data is available for the effect of FLASH with Very High Energy Electrons (VHEE). pBR322 plasmid DNA was used as a biological model to measure DNA damage in response to Very High Energy Electron (VHEE) irradiation at conventional (0.08 Gy/s), intermediate (96 Gy/s) and ultra-high dose rates (UHDR, (2 × 109 Gy/s) at the CERN Linear Electron Accelerator (CLEAR) user facility. UHDRs were used to determine if the biological FLASH effect could be measured in the plasmid model, within a hydroxyl scavenging environment. Two different concentrations of the hydroxyl radical scavenger Tris were used in the plasmid environment to alter the proportions of indirect damage, and to replicate a cellular scavenging capacity. Indirect damage refers to the interaction of ionising radiation with molecules and species to generate reactive species which can then attack DNA. UHDR irradiated plasmid was shown to have significantly reduced amounts of damage in comparison to conventionally irradiated, where single strand breaks (SSBs) was used as the biological endpoint. This was the case for both hydroxyl scavenging capacities. A reduced electron energy within the VHEE range was also determined to increase the DNA damage to pBR322 plasmid. Results indicate that the pBR322 plasmid model can be successfully used to explore and test the effect of UHDR regimes on DNA damage. This is the first study to report FLASH sparing with VHEE, with induced damage to pBR322 plasmid DNA as the biological endpoint. UHDR irradiated plasmid had reduced amounts of DNA single-strand breaks (SSBs) in comparison with conventional dose rates. The magnitude of the FLASH sparing was a 27% reduction in SSB frequency in a 10 mM Tris environment and a 16% reduction in a 100 mM Tris environment.Mini-GRID radiotherapy on the CLEAR very-high-energy electron beamline: collimator optimization, film dosimetry, and Monte Carlo simulations
Physics in Medicine and Biology IOP Publishing 69:5 (2024) 055003
Plastic Scintillator Dosimetry of Ultrahigh Dose-Rate 200 MeV Electrons at CLEAR
IEEE Sensors Journal Institute of Electrical and Electronics Engineers (IEEE) 24:9 (2024) 14229-14237
Electron beam studies on a beam position monitor based on Cherenkov diffraction radiation
Proceedings of the 14th International Particle Accelerator Conference JACoW Publishing (2023) 4806-4809
Abstract:
A beam position monitor based on Cherenkov diffraction radiation (ChDR BPM) is currently under investigation to disentangle the electromagnetic field of an electron bunch from that of a proton bunch travelling together in time and space in the beam-line of the AWAKE plasma acceleration experiment at CERN. The signals from a horizontal pair of ChDR BPM radiators have been studied under a variety of beam conditions at the CLEAR electron beam test facility. This paper summarizes the results using microwave signal processing at different frequency ranges.Development and Testing of a Cherenkov Beam Loss Monitor in CLEAR Facility
(2021)