Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr Ian Lewis

Instrument Scientist

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Astronomical instrumentation
  • Extremely Large Telescope
ian.lewis@physics.ox.ac.uk
Telephone: 01865 (2)73340
Denys Wilkinson Building, room 361C
  • About
  • Publications

The 2dF Galaxy Redshift Survey: the luminosity function of cluster galaxies

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 342:3 (2003) 725-737

Authors:

R De Propris, M Colless, SP Driver, W Couch, JA Peacock, IK Baldry, CM Baugh, J Bland-Hawthorn, T Bridges, R Cannon, S Cole, C Collins, N Cross, GB Dalton, G Efstathiou, RS Ellis, CS Frenk, K Glazebrook, E Hawkins, C Jackson, O Lahav, I Lewis, S Lumsden, S Maddox, DS Madgwick, P Norberg, W Percival, B Peterson, W Sutherland, K Taylor
More details from the publisher

The 2dF Galaxy Redshift Survey: galaxy clustering per spectral type

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 344:3 (2003) 847-856

Authors:

DS Madgwick, E Hawkins, O Lahav, S Maddox, P Norberg, JA Peacock, IK Baldry, CM Baugh, JB Hawthorn, T Bridges, R Cannon, S Cole, M Colless, C Collins, W Couch, G Dalton, R De Propris, SP Driver, G Efstathiou, RS Ellis, CS Frenk, K Glazebrook, C Jackson, I Lewis, S Lumsden, BA Peterson, W Sutherland, K Taylor
More details from the publisher

Parameter constraints for flat cosmologies from cosmic microwave background and 2dFGRS power spectra

Monthly Notices of the Royal Astronomical Society 337:3 (2002) 1068-1080

Authors:

WJ Percival, W Sutherland, JA Peacock, CM Baugh, J Bland-Hawthorn, T Bridges, R Cannon, S Cole, M Colless, C Collins, W Couch, G Dalton, R De Propris, SP Driver, G Efstathiou, RS Ellis, CS Frenk, K Glazebrook, C Jackson, O Lahav, I Lewis, S Lumsden, S Maddox, S Moody, P Norberg, BA Peterson, K Taylor

Abstract:

We constrain flat cosmological models with a joint likelihood analysis of a new compilation of data from the cosmic microwave background (CMB) and from the 2dF Galaxy Redshift Survey (2dFGRS). Fitting the CMB alone yields a known degeneracy between the Hubble constant h and the matter density Ωm, which arises mainly from preserving the location of the peaks in the angular power spectrum. This 'horizon-angle degeneracy' is considered in some detail and is shown to follow the simple relation Ωm h3.4 = constant. Adding the 2dF-GRS power spectrum constrains Ωm h and breaks the degeneracy. If tensor anisotropies are assumed to be negligible, we obtain values for the Hubble constant of h = 0.665±0.047, the matter density Ωm = 0.313±0.055, and the physical cold dark matter and baryon densities Ωm h2 = 0.115±0.009, Ωm h2 = 0.022±0.002 (standard rms errors). Including a possible tensor component causes very little change to these figures; we set an upper limit to the tensor-to-scalar ratio of r < 0.7 at a 95 per cent confidence level. We then show how these data can be used to constrain the equation of state of the vacuum, and find w < -0.52 at 95 per cent confidence. The preferred cosmological model is thus very well specified, and we discuss the precision with which future CMB data can be predicted, given the model assumptions. The 2dFGRS power-spectrum data and covariance matrix, and the CMB data compilation used here, are available from http://www.roe.ac.uk/~wjp/.
More details from the publisher

The 2dF Galaxy Redshift Survey: The bias of galaxies and the density of the Universe

Monthly Notices of the Royal Astronomical Society 335:2 (2002) 432-440

Authors:

L Verde, AF Heavens, WJ Percival, S Matarrese, CM Baugh, J Bland-Hawthorn, T Bridges, R Cannon, S Cole, M Colless, C Collins, W Couch, G Dalton, R De Propris, SP Driver, G Efstathiou, RS Ellis, CS Frenk, K Glazebrook, C Jackson, O Lahav, I Lewis, S Lumsden, S Maddox, D Madgwick, P Norberg, JA Peacock, BA Peterson, W Sutherland, K Taylor

Abstract:

We compute the bispectrum of the 2dF Galaxy Redshift Survey (2dFGRS) and use it to measure the bias parameter of the galaxies. This parameter quantifies the strength of clustering of the galaxies relative to the mass in the Universe. By analysing 80 × 106 triangle configurations in the wavenumber range 0.1 < k < 0.5 h Mpc-1 (i.e. on scales roughly between 5 and 30 h-1 Mpc) we find that the linear bias parameter is consistent with unity: b1 = 1.04 ± 0.11, and the quadratic (non-linear) bias is consistent with zero: b2 = -0.054 ± 0.08. Thus, at least on large scales, optically selected galaxies do indeed trace the underlying mass distribution. The bias parameter can be combined with the 2dFGRS measurement of the redshift distortion parameter β ≃ Ω0.6m/b1, to yield Ωm = 0.27 ± 0.06 for the matter density of the Universe, a result that is determined entirely from this survey, independent of other data sets. Our measurement of the matter density of the Universe should be interpreted as Ωm at the effective redshift of the survey (z = 0.17).
More details from the publisher

The 2dF galaxy redshift survey: The environmental dependence of galaxy star formation rates near clusters

Monthly Notices of the Royal Astronomical Society 334:3 (2002) 673-683

Authors:

I Lewis, M Balogh, R De Propris, W Couch, R Bower, A Offer, J Bland-Hawthorn, IK Baldry, C Baugh, T Bridges, R Cannon, S Cole, M Colless, C Collins, N Cross, G Dalton, SP Driver, G Efstathiou, RS Ellis, CS Frenk, K Glazebrook, E Hawkins, C Jackson, O Lahav, S Lumsden, S Maddox, D Madgwick, P Norberg, JA Peacock, W Percival, BA Peterson, W Sutherland, K Taylor

Abstract:

We have measured the equivalent width of the Ha emission line for 11 006 galaxies brighter than Mb, = -19 (ΩΛ = 0.7, Ωm = 0.3, H0 = 70 km s-1 Mpc-1) at 0.05 < z < 0.1 in the 2dF Galaxy Redshift Survey (2dFGRS), in the fields of 17 known galaxy clusters. The limited redshift range ensures that our results are insensitive to aperture bias, and to residuals from night sky emission lines. We use these measurements to trace μ*, the star formation rate normalized to L*, as a function of distance from the cluster centre, and local projected galaxy density. We find that the distribution of μ* steadily skews toward larger values with increasing distance from the cluster centre, converging to the field distribution at distances greater than ∼3 times the virial radius. A correlation between star formation rate and local projected density is also found, which is independent of cluster velocity dispersion and disappears at projected densities below ∼1 galaxy Mpc-2 (brighter than Mb, = -19). This characteristic scale corresponds approximately to the mean density at the cluster virial radius. The same correlation holds for galaxies more than two virial radii from the cluster centre. We conclude that environmental influences on galaxy properties are not restricted to cluster cores, but are effective in all groups where the density exceeds this critical value. The present-day abundance of such systems, and the strong evolution of this abundance, makes it likely that hierarchical growth of structure plays a significant role in decreasing the global average star formation rate. Finally, the low star formation rates well beyond the virialized cluster rule out severe physical processes, such as ram pressure stripping of disc gas, as being completely responsible for the variations in galaxy properties with environment.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 17
  • Page 18
  • Page 19
  • Page 20
  • Current page 21
  • Page 22
  • Page 23
  • Page 24
  • Page 25
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet