Galaxy Zoo: morphological classifications for 120 000 galaxies in HST legacy imaging
Monthly Notices of the Royal Astronomical Society Oxford University Press 464:4 (2016) 4176-4203
Abstract:
We present the data release paper for the Galaxy Zoo: Hubble (GZH) project. This is the third phase in a large effort to measure reliable, detailed morphologies of galaxies by using crowdsourced visual classifications of colour composite images. Images in GZH were selected from various publicly-released Hubble Space Telescope Legacy programs conducted with the Advanced Camera for Surveys, with filters that probe the rest-frame optical emission from galaxies out to $z \sim 1$. The bulk of the sample is selected to have $m_{I814W} < 23.5$,but goes as faint as $m_{I814W} < 26.8$ for deep images combined over 5 epochs. The median redshift of the combined samples is $z = 0.9 \pm 0.6$, with a tail extending out to $z \sim 4$. The GZH morphological data include measurements of both bulge- and disk-dominated galaxies, details on spiral disk structure that relate to the Hubble type, bar identification, and numerous measurements of clump identification and geometry. This paper also describes a new method for calibrating morphologies for galaxies of different luminosities and at different redshifts by using artificially-redshifted galaxy images as a baseline. The GZH catalogue contains both raw and calibrated morphological vote fractions for 119,849 galaxies, providing the largest dataset to date suitable for large-scale studies of galaxy evolution out to $z \sim 1$.PLANET HUNTERS. VIII. CHARACTERIZATION OF 41 LONG-PERIOD EXOPLANET CANDIDATES FROM KEPLER ARCHIVAL DATA* * This publication has been made possible by the participation of more than 200,000 volunteers in the Planet Hunters project. Their contributions are individually acknowledged at http://www.planethunters.org/#/acknowledgements
The Astrophysical Journal American Astronomical Society 815:2 (2015) 127
Space Warps II. New gravitational lens candidates from the CFHTLS discovered through citizen science
Monthly Notices of the Royal Astronomical Society Oxford University Press 455:2 (2015) 1191-1210
Abstract:
We report the discovery of 29 promising (and 59 total) new lens candidates from the CFHT Legacy Survey (CFHTLS) based on about 11 million classifications performed by citizen scientists as part of the first Space Warps lens search. The goal of the blind lens search was to identify lens candidates missed by robots (the RingFinder on galaxy scales and ArcFinder on group/cluster scales) which had been previously used to mine the CFHTLS for lenses. We compare some properties of the samples detected by these algorithms to the Space Warps sample and find them to be broadly similar. The image separation distribution calculated from the Space Warps sample shows that previous constraints on the average density profile of lens galaxies are robust. SpaceWarps recovers about 65% of known lenses, while the new candidates show a richer variety compared to those found by the two robots. This detection rate could be increased to 80% by only using classifications performed by expert volunteers (albeit at the cost of a lower purity), indicating that the training and performance calibration of the citizen scientists is very important for the success of Space Warps. In this work we present the SIMCT pipeline, used for generating in situ a sample of realistic simulated lensed images. This training sample, along with the false positives identified during the search, has a legacy value for testing future lens finding algorithms. We make the pipeline and the training set publicly available.Space Warps: I. Crowd-sourcing the discovery of gravitational lenses
Monthly Notices of the Royal Astronomical Society Oxford University Press 455:2 (2015) 1171-1190
Abstract:
We describe SpaceWarps, a novel gravitational lens discovery service that yields samples of high purity and completeness through crowd-sourced visual inspection. Carefully produced colour composite images are displayed to volunteers via a webbased classification interface, which records their estimates of the positions of candidate lensed features. Images of simulated lenses, as well as real images which lack lenses, are inserted into the image stream at random intervals; this training set is used to give the volunteers instantaneous feedback on their performance, as well as to calibrate a model of the system that provides dynamical updates to the probability that a classified image contains a lens. Low probability systems are retired from the site periodically, concentrating the sample towards a set of lens candidates. Having divided 160 square degrees of Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) imaging into some 430,000 overlapping 82 by 82 arcsecond tiles and displaying them on the site, we were joined by around 37,000 volunteers who contributed 11 million image classifications over the course of 8 months. This Stage 1 search reduced the sample to 3381 images containing candidates; these were then refined in Stage 2 to yield a sample that we expect to be over 90% complete and 30% pure, based on our analysis of the volunteers performance on training images. We comment on the scalability of the SpaceWarps system to the wide field survey era, based on our projection that searches of 105 images could be performed by a crowd of 105 volunteers in 6 days.Radio Galaxy Zoo: host galaxies and radio morphologies derived from visual inspection
Monthly Notices of the Royal Astronomical Society Oxford University Press 453:3 (2015) 2326-2340