Disaster, infrastructure and participatory knowledge: the Planetary Response Network
Citizen Science: Theory and Practice Ubiquity Press 7:1 (2022) 21-21
Abstract:
There are many challenges involved in online participatory humanitarian response. We evaluate the Planetary Response Network (PRN), a collaboration between researchers, humanitarian organizations, and the online citizen science platform Zooniverse. The PRN uses satellite and aerial image analysis to provide stakeholders with high-level situational awareness during and after humanitarian crises. During past deployments, thousands of online volunteers have compared pre- and post-event satellite images to identify damage to infrastructure and buildings, access blockages, and signs of people in distress. In addition to collectively producing aggregated “heat maps” of features that are shared with responders and decision makers, individual volunteers may also flag novel features directly using integrated community discussion software. The online infrastructure facilitates worldwide participation even for geographically focused disasters; this widespread public participation means that high-value information can be delivered rapidly and uniformly even for large-scale crises. We discuss lessons learned from deployments, place the PRN’s distributed online approach in the context of more localized efforts, and identify future needs for the PRN and similar online crisis-mapping projects. The successes of the PRN demonstrate that effective online crisis mapping is possible on a generalized citizen science platform such as the Zooniverse.Practical galaxy morphology tools from deep supervised representation learning
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 513:2 (2022) 1581-1599
Galaxy Zoo: Clump Scout: Surveying the Local Universe for Giant Star-forming Clumps
The Astrophysical Journal American Astronomical Society 931:1 (2022) 16
Serendipitous discovery of radio flaring behaviour from a nearby M dwarf with MeerKAT
Monthly Notices of the Royal Astronomical Society Oxford University Press 513:3 (2022) 3482-3492
Abstract:
We report on the detection of MKT J174641.0−321404, a new radio transient found in untargeted searches of wide-field MeerKAT radio images centred on the black hole X-ray binary H1743−322. MKT J174641.0−321404 is highly variable at 1.3 GHz and was detected three times during 11 observations of the field in late 2018, reaching a maximum flux density of 590 ± 60 μJy. We associate this radio transient with a high proper motion, M dwarf star SCR 1746−3214 12 pc away from the Sun. Multiwavelength observations of this M dwarf indicate flaring activity across the electromagnetic spectrum, consistent with emission expected from dMe stars, and providing upper limits on quiescent brightness in both the radio and X-ray regimes. TESS photometry reveals a rotational period for SCR 1746−3214 of 0.2292 ± 0.0025 days, which at its estimated radius makes the star a rapid rotator, comparable to other low mass systems. Dedicated spectroscopic follow up confirms the star as a mid-late spectral M dwarf with clear magnetic activity indicated by strong Hα emission. This transient’s serendipitous discovery by MeerKAT, along with multiwavelength characterisation, make it a prime demonstration of both the capabilities of the current generation of radio interferometers and the value of simultaneous observations by optical facilities such as MeerLICHT. Our results build upon the literature of of M dwarfs’ flaring behaviour, particularly relevant to the habitability of their planetary systems.Serendipitous discovery of radio flaring behaviour from a nearby M dwarf with MeerKAT
(2022)