Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Satellite image showing tracks (long bands of clouds)

Satellite image showing shiptracks in the Pacific

Credit: NASA/MODIS

Peter Manshausen (he/him)

Graduate Student (Marie Curie ESR)

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate processes
peter.manshausen@physics.ox.ac.uk
Atmospheric Physics Clarendon Laboratory
GitHub
iMIRACLI profile
Personal website
  • About
  • Teaching
  • Outreach
  • Publications

Glaciation of liquid clouds, snowfall and reduced cloud cover at industrial aerosol hot spots

Science American Association for the Advancement of Science 386:6723 (2024) 756-762

Authors:

Velle Toll, Jorma Rahu, Hannes Keernik, Heido Trofimov, Tanel Voormansik, Peter Manshausen, Emma Hung, Daniel Michelson, Matthew Christensen, Piia Post, Heikki Junninen, Benjamin J Murray, Ulrike Lohmann, Duncan Watson-Parris, Philip Stier, Norman Donaldson, Trude Storelvmo, Markku Kulmala, Nicolas Bellouin

Abstract:

The ability of anthropogenic aerosols to freeze supercooled cloud droplets remains debated. In this work, we present observational evidence for the glaciation of supercooled liquid-water clouds at industrial aerosol hot spots at temperatures between −10° and −24°C. Compared with the nearby liquid-water clouds, shortwave reflectance was reduced by 14% and longwave radiance was increased by 4% in the glaciation-affected regions. There was an 8% reduction in cloud cover and an 18% reduction in cloud optical thickness. Additionally, daily glaciation-induced snowfall accumulations reached 15 millimeters. Glaciation events downwind of industrial aerosol hot spots indicate that anthropogenic aerosols likely serve as ice-nucleating particles. However, rare glaciation events downwind of nuclear power plants indicate that factors other than aerosol emissions may also play a role in the observed glaciation events.
More details from the publisher
Details from ORA
More details
More details

Has Reducing Ship Emissions Brought Forward Global Warming?

Geophysical Research Letters Wiley Open Access 51:15 (2024) e2024GL109077

Authors:

A Gettelman, MW Christensen, MS Diamond, E Gryspeerdt, P Manshausen, P Stier, D Watson‐Parris, M Yang, M Yoshioka, T Yuan

Abstract:

Ships brighten low marine clouds from emissions of sulfur and aerosols, resulting in visible “ship tracks”. In 2020, new shipping regulations mandated an ∼80% reduction in the allowed fuel sulfur content. Recent observations indicate that visible ship tracks have decreased. Model simulations indicate that since 2020 shipping regulations have induced a net radiative forcing of +0.12 Wm−2. Analysis of recent temperature anomalies indicates Northern Hemisphere surface temperature anomalies in 2022–2023 are correlated with observed cloud radiative forcing and the cloud radiative forcing is spatially correlated with the simulated radiative forcing from the 2020 shipping emission changes. Shipping emissions changes could be accelerating global warming. To better constrain these estimates, better access to ship position data and understanding of ship aerosol emissions are needed. Understanding the risks and benefits of emissions reductions and the difficultly in robust attribution highlights the large uncertainty in attributing proposed deliberate climate intervention.
More details from the publisher
Details from ORA

Generative Data Assimilation of Sparse Weather Station Observations at Kilometer Scales

ArXiv 2406.16947 (2024)

Authors:

Peter Manshausen, Yair Cohen, Peter Harrington, Jaideep Pathak, Mike Pritchard, Piyush Garg, Morteza Mardani, Karthik Kashinath, Simon Byrne, Noah Brenowitz
Details from ArXiV

Supplementary material to "Weak liquid water path response in ship tracks"

(2024)

Authors:

Anna Tippett, Edward Gryspeerdt, Peter Manshausen, Philip Stier, Tristan WP Smith
More details from the publisher

Rapid saturation of cloud water adjustments to shipping emissions

Atmospheric Chemistry and Physics European Geosciences Union 23:19 (2023) 12545-12555

Authors:

Peter Manshausen, Duncan Watson-Parris, Matthew W Christensen, Jukka-Pekka Jalkanen, Philip Stier

Abstract:

Human aerosol emissions change cloud properties by providing additional cloud condensation nuclei. This increases cloud droplet numbers, which in turn affects other cloud properties like liquid-water content and ultimately cloud albedo. These adjustments are poorly constrained, making aerosol effects the most uncertain part of anthropogenic climate forcing. Here we show that cloud droplet number and water content react differently to changing emission amounts in shipping exhausts. We use information about ship positions and modeled emission amounts together with reanalysis winds and satellite retrievals of cloud properties. The analysis reveals that cloud droplet numbers respond linearly to emission amount over a large range (1–10 kg h−1) before the response saturates. Liquid water increases in raining clouds, and the anomalies are constant over the emission ranges observed. There is evidence that this independence of emissions is due to compensating effects under drier and more humid conditions, consistent with suppression of rain by enhanced aerosol. This has implications for our understanding of cloud processes and may improve the way clouds are represented in climate models, in particular by changing parameterizations of liquid-water responses to aerosol.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet